
6/11/2025 1

FLEx 9.1 Conceptual Model
Ken Zook

June 11, 2025

Contents
FLEx 9.1 Conceptual Model ... 1
1 Introduction ... 2
2 Basic concepts ... 3

2.1 Classes and properties .. 4

2.2 Writing systems .. 5
2.3 Basic properties .. 7

2.3.1 Strings ... 8

2.3.1.1 Unicode .. 8
2.3.1.2 String ... 9
2.3.1.3 MultiUnicode ... 10

2.3.1.4 MultiString... 10
2.3.2 Binary .. 11
2.3.3 Boolean ... 11

2.3.4 GenDate .. 11
2.3.5 Guid... 12

2.3.6 Integer ... 12
2.3.7 TextPropBinary ... 12
2.3.8 Time .. 13

2.4 Linking properties .. 13
2.5 Owning relationships.. 13

2.6 Reference relationships .. 15
2.7 Styles .. 16

2.8 Possibility lists ... 17
2.9 Custom fields.. 20

2.10 Send/Receive Data ... 22
3 Conceptual model resources ... 26

3.1 Model diagram chm ... 26
3.2 Model class/property spreadsheet .. 30

3.3 LCMBrowser .. 32
3.3.1 LCM model ... 32
3.3.2 LCM data .. 33

3.4 Fieldworks source code .. 35

3.5 dnSpy debugger .. 36
4 Lexicon model .. 36

4.1 Entries... 37

4.1.1 Headwords .. 40
4.1.2 Pronunciations... 41
4.1.3 Etymology ... 42
4.1.4 Allomorphs ... 42
4.1.5 Grammatical information. ... 45

FLEx Conceptual Model Page 2

6/11/2025

4.1.6 Messages ... 45

4.2 Complex forms and variants .. 47

4.2.1 Complex forms.. 47
4.2.2 Variants ... 49

4.3 Senses ... 50
4.3.1 Example sentences .. 51
4.3.2 Extended notes .. 52

4.3.3 Lexical relations .. 53
4.3.3.1 Collection... 54
4.3.3.2 Pair with different names ... 54
4.3.3.3 Sequence .. 55
4.3.3.4 Tree .. 55

4.3.3.5 Unidirectional .. 56

4.3.4 Reversals ... 57
4.3.5 Pictures .. 59

4.3.6 Sound files .. 59

4.4 Virtual ordering .. 59
4.5 Publications .. 60

5 Grammar model .. 61

5.1 Inflection features ... 62
5.2 Categories ... 63

5.3 Lexicon ... 65
6 Interlinear model ... 67

6.1 Structured Text ... 67

6.2 Segment .. 68
6.3 Wordforms ... 70

6.4 Analyses ... 71
6.5 Approving analyses .. 74

6.6 Text Tagging .. 76
6.7 Discourse Charting ... 77

6.8 Scripture ... 82
7 Notebook model .. 87

1 Introduction

FieldWorks Language Explorer (FLEx) is a program for developing dictionaries with any

number of languages or writing systems, specifying grammar features, analyzing texts, parsing

texts, and developing a research notebook.

This document describes the underlying format of the data in FieldWorks version 9.1.25, mainly

stored in an XML .fwdata file in the project directory. It covers the basic conceptual model for

processing different types of data. A corresponding FLEx project, “FLEx Conceptual Model

sample project” demonstrates all of the items discussed in this document. This document can be

downloaded from here, and the sample project can be downloaded from here. This document, the

FLEx project, and three PowerPoint presentations from this document are available at

https://github.com/sillsdev/FwDocumentation/tree/develop/HelpResourcesSources/TechnicalNot

es.

https://downloads.languagetechnology.org/fieldworks/Documentation/FLEx%209.1%20Conceptual%20Model.pdf
https://github.com/sillsdev/FwDocumentation/blob/develop/HelpResourcesSources/TechnicalNotes/FLEx%209.1%20Conceptual%20Model%20sample%20project%202024-06-21%201317.fwbackup
https://github.com/sillsdev/FwDocumentation/tree/develop/HelpResourcesSources/TechnicalNotes
https://github.com/sillsdev/FwDocumentation/tree/develop/HelpResourcesSources/TechnicalNotes

FLEx Conceptual Model Page 3

6/11/2025

Data for a language project is stored in a folder, normally under

c:\ProgramData\SIL\FieldWorks\Projects. The data is stored in a single XML file with a .fwdata

file extension. The project also has several subfolders as follows:

• WritingSystemStore directory that holds XML .ldml files for each writing system used in the

project.

• ConfigurationSettings directory that stores various XML files containing various user

settings for field visibility, sizing of windows, columns, filters, dictionary configuration, etc.

• LinkedFiles directory for storing pictures, media files, etc.

• SharedSettings directory that holds user settings for writing system fonts, keyboards,

language name and abbreviation, etc.

• Temp directory that holds some caches for speeding up sorting.

Several settings files are also stored under %localappdata%\SIL

Some settings are in Windows environment variables and in the registry under

HKEY_LOCAL_MACHINE\SOFTWARE\SIL\FieldWorks, and

HKEY_CURRENT_USER\Software\SIL\FieldWorks.

2 Basic concepts

FieldWorks uses an object-oriented data structure. The Fieldworks versions before FW7.0 stored

data in SQL Server. Fieldworks 7.0 switched to using an XML format with data stored in a

fwdata file. At some point in the future we may use a different data storage. An fwdata file

contains XML data in the following format.

<?xml version="1.0" encoding="utf-8"?>
<languageproject version="7000072">
<AdditionalFields>
<CustomField class="LexEntry" name="Phonetic" type="MultiUnicode" wsSelector="-4" />
</AdditionalFields>
<rt class="CmSemanticDomain" guid="00041516-72d1-4e56-9ed8-fe235a9b1a68"
ownerguid="00269021-e1c4-474d-9dba-341d296bdac7">
…
</rt>
more rt class (object) instances sorted by class guid
</languageproject>

A data model version number identifies the model for this file. When the model changes, this

number is incremented, and when the file is opened in a newer version of FLEx with a higher

version number, the data will be migrated to the newer number. Older programs cannot open a

project that has been migrated to a higher version number. The 7000072 model number has not

changed since FW9.0.1. Optional custom field definitions are stored in an AdditionalFields

element. The rest of the file is a series of rt elements listing all of the class instances in the

project. Each class instance gives the name of the class, a Globally Unique Identifier (guid), and

an optional owner guid that specifies an ownership hierarchy. The rt elements are sorted by the

guid field.

If you remove all CRLF from a fwdata file it will crash when you try to open it. I believe it’s

only the first two lines that must have CRLF at the end for it to open. Also, Send/Receive

requires some field elements be in place, even though that’s not an XML requirement. If you

FLEx Conceptual Model Page 4

6/11/2025

modify a fwdata file outside of FLEx, it’s wise to open the project and choose Tools > Utilities >

Write Everything. This makes sure it’s formatted properly.

Note when processing fwdata that some rt elements may have no content, so they have this

format.

<rt class="CmSemanticDomain" guid="00041516-72d1-4e56-9ed8-fe235a9b1a68"
ownerguid="00269021-e1c4-474d-9dba-341d296bdac7" />

Any time you modify the fwdata file outside of FLEx, you’d better make a backup of the file

ahead of time in case your change makes it unloadable.

All data in FLEx should be valid Unicode data. When FLEx opens an fwdata file, it normalizes

the data in memory to Normalization Form Decomposed (NFD). Anything that is imported,

typed, or copied into Flex will be normalized to NFD. Anything that Flex writes out though the

clipboard, exports, and saving to fwdata will be converted to Normalization Form Composed

(NFC). A useful program that shows information on Unicode code points including

normalization forms is UniBook (https://www.unicode.org/unibook/).

Any processes that work internally with FLEx such as bulk edit processes, keyboard definitions

using context, and FlexTools must handle NFD data.

2.1 Classes and properties

In an object-oriented design, objects represent some object or concept we want to model. For

example, an entry would be an object in a dictionary. An entry has various fields that are related

at the entry level including a lexeme form. Fields that only occur once in an entry can be stored

directly in the entry object. However, when something may occur more than once, then a

different object needs to be used to define that part of an entry. Since an entry can have multiple

senses, each with a part of speech, definition, etc., we need a sense object as part of an entry.

FieldWorks stores all data in objects with class names. Each class has a unique Class ID integer

that is used in various places in code, often abbreviated clid for class ID. For instance, a lexical

https://www.unicode.org/unibook/

FLEx Conceptual Model Page 5

6/11/2025

entry is a LexEntry class with ID 5002. A sense within an entry is a LexSense class with ID

5016, and an example sentence within a sense is a LexExampleSentence class with ID 5004.

Most classes are arranged in an ownership hierarchy.

In this case LexExampleSense is owned by LexSense, which is owned by LexEntry. If you

delete the entry, it also deletes all objects in its ownership hierarchy. This is not true, however, if

editing fwdata. Each object is an rt element in scattered locations in the file.

Each class has properties, or fields that hold the data for that class. Properties also have unique

integer IDs, often abbreviated as flid for field ID in code. The flid includes the 4-digit class id

followed by a 3 digit field number. For example, a Definition on LexSense has a flid of 5016005

The Classes in FieldWorks have an inheritance hierarchy starting with CmObject at the top of

the hierarchy. Subclasses inherit properties from superclasses in the hierarchy. Since CmObject

has a Guid property, and all classes are subclasses of CmObject, it means all classes will have a

Guid property. CmMajorObject is a subclass of CmObject and defines a Name property. LexDb

is a subclass of CmMajorObject, so it inherits Name from CmMajorObject and Guid from

CmObject. The class hierarchy can be viewed using the LCM Browser discussed in section 3.3

Some classes are abstract, meaning they will never show up as an instance in the data. Only

subclasses of the abstract class will show up in fwdata. An example of this is MoForm. The

LexemeForm property of LexEntry holds a MoForm. What is actually in the data would be one

of the subclasses: MoStemAllomorph, MoAffixAllomorph, or MoAffixForm.

2.2 Writing systems

Writing systems are required in a FieldWorks project. Almost every string identifies each range

of characters by a writing system. The writing system identifies a language, and various other

tags that further define aspects of the writing system in this language. For example, a language

may use a non-Roman script, there may be a Romanized form of the string, and there could be an

IPA form of the string. Writing system tags may identify dialects of the language. A special tag

is used to identify a recording of the string. Example writing system tags:

• ar: Arabic language in Arabic script

• ar-latn: Arabic language in a Romanized script

• ar-fonipa: Arabic language in the International Phonetic Alphabet

• ar-Zxxx-x-audio: An audio recording of Arabic language (SIL user-defined)

Writing systems contain one or more collations for sorting (FLEx only uses one), a list of valid

characters, possible fonts and keyboards, ways to display numbers, dates, time, currency,

localized names for languages, countries, and scripts, etc. FLEx does not use most of this

information, but passes it along.

Writing system information is stored using the Unicode Locale Data Markup Language

specification in files with .ldml as the extension. Unicode Technical Standard #35 describes this

FLEx Conceptual Model Page 6

6/11/2025

standard at http://unicode.org/reports/tr35/. The SIL Writing System Technology Department

(WSTech) interfaces with the Unicode Consortium and has a special web server api to provide

standard writing system codes for our use (e.g., this returns an English ldml file:

https://ldml.api.sil.org/en). See

https://downloads.languagetechnology.org/fieldworks/Documentation/FieldWorks_7_Writing_sy

stems.pdf for more information on writing systems used in FieldWorks.

Each language has a default region and a default script. WsTech maintains a list of defaults. You

can see this list in C:\ProgramData\SIL\SldrCache\langtags.json. An example is en-Latn-US for

English using the Latin script and the US region. This is essentially identical to en, en-Latn, and

en-US. Starting inFW9.0 we no longer allow a user to have both en and en-Latn in a project, and

normally it is just the language code. The ldml identity element has these 1-4 elements:

<language type="en" />
<script type="Latn" />
<region type="US" />
<variant type="x-sci" />

The name of this writing system file is en-Latn-US-x-sci.ldml.

In order to avoid a model change to deal with merged writing systems from older versions (e.g.,

data in both en and en-Latn), FLEx will leave the en-Latn data in fwdata, and en.ldml and en-

Latn.ldml, but the latter only has language type="en" /> without the script element. In the UI, in

the Writing System Property dialog, it shows “en” for both writing system codes and a red

outline appears around the writing systems and it will not allow you to click OK until you

rename one of the writing systems. The region code is not restricted in this way.

FieldWorks maintains two lists of writing systems for use in a project. A FLEx project is

assumed to have one vernacular language which can have any number of writing systems for that

language. These writing systems can be seen in Format > Set up Vernacular Writing Systems.

Glosses, definitions, and other languages describing this vernacular language are stored in

analysis languages. FLEx can have any number of analysis languages with any number of

writing systems for each one. These writing systems can be seen in Format > Set up Analysis

Writing Systems.

In the Writing System Property dialog, The Code line at the top of the General tab corresponds to

the writing system tag used in the ldml file names.

If FLEx opens an .ldml file it cannot parse, it changes the ldml extension to ldml.bad and then

creates a new valid ldml file in order to continue. It also adds a badldml.log file explaining what

happened.

There are several elements in the LangProject class of fwdata for recording lists of writing

systems. VernWss and AnalysisWss list all of the writing systems that show in the Writing

System Property dialog. The Cur elements list current ones that are checked. These will normally

be displayed for all multilingual fields.

<VernWss>
<Uni>gur gur-Zxxx-x-audio</Uni>
</VernWss>

<AnalysisWss>
<Uni>fr en</Uni>
</AnalysisWss>

http://unicode.org/reports/tr35/
https://ldml.api.sil.org/en
https://downloads.languagetechnology.org/fieldworks/Documentation/FieldWorks_7_Writing_systems.pdf
https://downloads.languagetechnology.org/fieldworks/Documentation/FieldWorks_7_Writing_systems.pdf

FLEx Conceptual Model Page 7

6/11/2025

<CurAnalysisWss>
<Uni>fr en</Uni>
</CurAnalysisWss>

<CurPronunWss>
<Uni>gur</Uni>
</CurPronunWss>

<CurVernWss>
<Uni>gur gur-Zxxx-x-audio</Uni>
</CurVernWss>

When a writing system is hidden in the UI, it is just removed from the above lists, but the data

remains in the fwdata file and can be shown again using the View Hidden Writing Systems

option in the green + button in Writing System Properties. If you right-click a writing system and

choose the Delete menu item, it will actually remove all data in the writing system from the

fwdata file and remove the associated ldml file.

There is also a global writing system store in C:\ProgramData\SIL\WritingSystemRepository\3.

When a user adds a new writing system to a project, if it is present in the global store, it will

copy that writing system to the project WritingSystemStore directory. If it is not in the global

store, and the Internet is available, it will request the writing system from https://ldml.api.sil.org

and will store this in C:\ProgramData\SIL\SldrCache and in the global store in addition to the

local project. If a writing system is modified in FLEx, the project ldml file is modified and then

copied to the global store.

Fonts and keyboards for writing systems are selected independently by each user. This

information is stored in the SharedSettings folder inside the project folder. This information is

stored in a .ulsx file with the user name with a WritingSystem element

 <WritingSystem id="tog-018-x-leya">
 <LocalKeyboard>en-US_US_US</LocalKeyboard>
 <DefaultFontName>Charis SIL</DefaultFontName>
 </WritingSystem>

The writing system abbreviation, language name, spell checking id, and legacy mapping is stored

in LexiconSetting.plsx in this directory.

 <WritingSystem id="tog">
 <Abbreviation>Ton</Abbreviation>
 <LanguageName>Tonga (Nyasa) (tog-Latn-018-x-leya)</LanguageName>
 <SpellCheckingId>tog</SpellCheckingId>
 <LegacyMapping>Windows1252<>Unicode</LegacyMapping>
 </WritingSystem>

The plsx file is send via Send/Receive, but the ulsx files are not sent. They need to be set by each

user.

2.3 Basic properties

Classes in FLEx have basic properties that hold actual data such as strings, numbers, dates, etc.

described in the following sections.

https://ldml.api.sil.org/

FLEx Conceptual Model Page 8

6/11/2025

2.3.1 Strings

All strings in FieldWorks store Unicode data. In the fwdata file it is stored in NFC normalization.

There are two basic types of strings in FieldWorks, which are poorly named since all strings are

in Unicode.

• Unicode: This type of string is a sequence of Unicode characters which does not allow any

embedding including styles and writing systems. In the FLEx UI these strings can be

recognized because the writing system and style combo boxes are disabled in the toolbar.

• String: This type of string is a sequence of Unicode characters, but can also have substrings

with styles and different writing systems, plus some other specialized attributes. In the FLEx

UI these strings can be recognized because the writing system and style combo boxes are

enabled in the toolbar.

If we started over, we would probably have a single kind of string, but when FLEx was first

developed it was using SQL Server for storage, and it was much more efficient dealing with a

simple type of string compared to added complexity storing strings with embeddings. There was

originally a bigger variety of each string that could hold really long strings. When switching to

XML storage in FW7, we dropped the big variety because it was irrelevant, but we maintained

the distinction between strings with or without embedding.

Strings in Fieldworks should never have a CRLF or tab. FLEx tries to prevent this on import,

typing, pasting, etc. Occasionally something slips through. In this case, when the field is

displayed, all of the text following the CRLF or tab will not show. If you place your cursor at

what appears to be the end of the string, and press Delete, it will delete the CRLF or tab and

you’ll see the rest of the string.

FLEx can force a line break in either type of string. In the UI, this happens when you enter

Shift+Enter. This inserts a U+2028 LNE SEPARATOR character in the string. This is somewhat

similar to having new paragraphs in a string, although there is no paragraph formatting applied in

this case.

Both types of strings can be used by itself in a property, or a property can hold multiple sets of

equivalent strings in different languages or writing systems. These multiple versions are called

MultiUnicode and MultString. The multiple property always has a writing system associated

with each alternative string. In a multiple property, every string in the property must have a

unique writing system, which means you can’t have two en alternatives. The strings in a multiple

property are normally the same string written in a different language (e.g., English, French,

German) or writing system (e.g., normal or IPA orthography), or any combination of these. The

writing system attributes in strings should always have a matching ldml file in the

WritingSystemStore directory.

2.3.1.1 Unicode

The simplest type of string is a FieldWorks Unicode string

<Name>
<Uni>Title Secondary</Uni>
</Name>

This is the Name property in StStyle. This type is used for file names and internal names for

styles, etc. that are used in the program, but do not have an inherent language. There is a slight

FLEx Conceptual Model Page 9

6/11/2025

problem with this. FieldWorks needs to use a writing system in order to determine which font

and keyboard to use with the string. The FieldWorks display mechanism shows boxes for

characters that are not in the current font rather than substituting other fonts as needed.

FieldWorks generally chooses a writing system representing the system language on your

computer, if the writing system exists, otherwise it defaults to English when displaying these

strings.

As in any XML file, certain characters must use character entities:

• Ampersand − &

• Single quote − '

• Greater than − >

• Less than − <

• Double quote − "

2.3.1.2 String

A String property is represented with a Str element containing one or more Run elements, each

with a specified writing system. All characters in a given Run share the same attributes.

Whenever a set of attributes changes, it requires a new Run. The following shows the Contents

of a StTxtPara object with a single Run in English.

<Contents>
<Str>
<Run ws="en">A contraction is a combination of two lexemes, each of which maintains its own
meaning.</Run>
</Str>
</Contents>

The following shows the Contents of a StTxtPara that includes multiple Runs with changes of

writing system and styles. Note that you can only have one namedStyle element in a Run. If you

want strong emphasized, you would need to have a single style that combines these features.

<Contents>
<Str>
<Run ws="en">Some English with </Run>
<Run namedStyle="Emphasized Text" ws="en">emphasized</Run>
<Run ws="en"> and </Run>
<Run namedStyle="Strong" ws="en">bold</Run>
<Run ws="en"> text. (French: </Run>
<Run ws="fr">français</Run>
<Run ws="en"> [</Run>
<Run ws="fr-fonipa">fʁɑ̃sɛ</Run>
<Run ws="en">]</Run>
</Str>
</Contents>

In the FLEx UI, you switch writing systems or styles using the writing system and style combo

boxes in the toolbar. Whenever a writing system is changed, FLEx automatically uses the

keyboard and font associated with that writing system, or a style that overrides the default font

from the Writing System Properties dialog. If the font does not have a glyph for a character in

the string, FLEx shows an open box in the display instead of finding a glyph in some related font

as is done in Microsoft Word. Note in document view, FLEx is using a web browser view which

will substitute glyphs from other fonts, but the data entry fields will show boxes.

FLEx Conceptual Model Page 10

6/11/2025

The following shows the Contents of a paragraph with a link to an external file named x.html.

<Contents>
<Str>
<Run ws="en">This is a link to file </Run>
<Run externalLink="Others\x.html" namedStyle="Hyperlink" ws="en">test</Run>
<Run ws="en">. </Run>
</Str>
</Contents>

The following is a hyperlink to a lexical entry in the current project, but it could be to a different

project. The link URL includes the project name, tool, and object guid.

<Contents>
<Str>
<Run ws="en">This is a link to an entry </Run>
<Run
externalLink="silfw://localhost/link?database%3dthis%24%26tool%3dlexiconEdit%26guid%3de331fd3
8-d774-4023-bc56-75e5f4ab818e%26tag%3d" namedStyle="Hyperlink" ws="en">here</Run>
<Run ws="en">.</Run>
</Str>
</Contents>

2.3.1.3 MultiUnicode

Many properties (fields) in FieldWorks are designed to hold strings that will never have

embedding, but may have translations in different languages or writing systems (e.g., lexeme

form, gloss, and names and abbreviations for list items). Here is how these MultiUnicode

properties are stored in fwdata.

<Name>
<AUni ws="en">adjunct</AUni>
<AUni ws="fr">accessoire</AUni>
<AUni ws="es">adjunto</AUni>
</Name>

This field is the Name for a CmPossibility object. In this case, there are three FieldWorks

Unicode strings; English, French, and Spanish. Each FieldWorks Unicode string is stored in an

AUni element. Even though the FieldWorks Unicode string itself does not have a writing system,

FieldWorks knows the intended writing system by the “ws” attribute of the AUni element. It is

an error to have more than one AUni element in a single property with the same writing system.

2.3.1.4 MultiString

Other properties (fields) need the ability to store equivalent translations, but also need to allow

embedded writing systems and formatting (e.g., definition, example sentence, example

translations, all note fields). Here is how these MultiString properties are encoded.

<Translation>
<AStr ws="en">
<Run ws="en">You may damage the computer.</Run>
</AStr>
<AStr ws="fr">
<Run ws="fr">Vous risquez d'endommager l'ordinateur.</Run>
</AStr>
</Translation>

FLEx Conceptual Model Page 11

6/11/2025

This field is the Translation property on a CmTranslation object. This example has translations

for English and French. This is a simple FieldWorks String in that it only contains one run, but

any number is possible as described in section 2.3.1.2. Each FieldWorks String is stored in an

AStr element which identifies the overall writing system for the FieldWorks String. Normally

this is the same writing system as the first run, but it does not have to be. You could have an

English string that starts with a French word. It is an error to have more than one AStr element in

a single property with the same writing system.

2.3.2 Binary

Binary properties are represented as follows:

<Sid>
<Binary>6400000001000000</Binary>
</Sid>

Binary data is stored as a sequence of hexadecimal bytes. Our current model only has one Binary

property: Sid on UserConfigAcct. But I don’t think it is used anywhere.

2.3.3 Boolean

Boolean properties are represented as follows:

<IsSorted val="true"/>

This is the IsSorted property on CmPossibilityList. The value is stored in the “val” attribute as

“true” or “false”. The default value for missing properties is false.

2.3.4 GenDate

GenDate provides a way to store an approximate date without a time (e.g., before March 1200

AD). They are stored as an int (4 bytes). This is a decimal representation of a generic date

without a time. It's up to the software to make sure the int is a valid date. The range is 21474 BC

through 21474 AD. The format is:

[-]YYYYMMDDP
YYYY is the 1-5 digit year (negative is BC) 0000 is unknown.
MM is the 2 digit month (for BC months it is 13 - M) 00 is unknown
DD is the 2 digit day (for BC days it is 32 - D) 00 is unknown
P is one of the following:
 0 = Before (If GenDate = 0, it means nothing is entered)
 1 = Exact
 2 = Approximate
 3 = After

GenDate properties are represented as follows:

<DateOfEvent val="202404020" />

This is the DateOfEvent property on RnGenericRec representing Before April 2, 2024. The

generic date is stored as a decimal number in the “val” attribute. In Notebook, GenDate is

available on Date of Event and uses a dialog to specify the parts of the date. GenDate is also

available on CmPerson for DateOfBirth and DateOfDeath, but it is not implemented in the

current FLEx UI.

FLEx Conceptual Model Page 12

6/11/2025

2.3.5 Guid

GUID (Globally Unique Identifier) properties are represented as follows:

<ListVersion val="b41ff27f-5caf-4eac-92de-0f92acb0caa3"/>

This is the ListVersion property on CmPossibilityList. The GUID value is stored in the “val”

attribute in this string format using this hex format.

Internal FLEx code often refers to an object using an hvo (handle to a viewable object). This is a

single integer that is assigned to each object when it is loaded. While in memory, it is a reliable

and quick way to find and reference objects. However, the next time the project is loaded,

especially if objects were added or deleted, it can affect some or all of the hvos the next time it is

loaded. In debugging it’s often challenging to find a guid for an object when all you have is the

hvo, and fwdata only has guids.

2.3.6 Integer

Integer properties hold positive or negative 64-bit integers and are represented as follows:

<HomographNumber val="12"/>

This is the HomographNumber property on LexEntry. The value of the integer is stored as a

decimal “val” attribute. The default value for missing properties is 0.

2.3.7 TextPropBinary

TextPropBinary is binary data that represents text properties. They are used in Rules and

StyleRules in StStyle. In the fwdata file they are stored in a Prop element with label and value

pairs.

<Rules>
<Prop bulNumScheme="10" bulNumStartAt="1" firstIndent="-9000" leadingIndent="21000"></Prop>
</Rules>

<StyleRules>
<Prop namedStyle="Normal" /Prop>
</StyleRules>

This is a list of TextPropTypes from FwKernelTlb.idl in liblcm.

ktptWs = 1

ktptItalic = 2

ktptBold = 3

ktptSuperscript = 4

ktptUnderline = 5

ktptFontSize = 6

ktptOffset = 7

ktptForeColor = 8

ktptBackColor = 9

ktptUnderColor = 10

ktptLineHeight = 24

ktptParaColor = 25

ktptSpellCheck = 26

ktptMarginTop = 50

ktptFontFamily = 1

ktptCharStyle = 2

ktptParaStyle = 3

ktptTabList = 4

ktptTags = 5

ktptObjData = 6

ktptBorderTrailing = 141

ktptBorderColor = 142

ktptBulNumScheme = 143

ktptBulNumStartAt = 144

ktptBulNumTxtBef = 145

ktptBulNumTxtAft = 146

ktptBulNumFontInfo = 147

ktptKeepWithNext = 148

ktptKeepTogether = 149

ktptHyphenate = 150

FLEx Conceptual Model Page 13

6/11/2025

ktptBaseWs = 16

ktptAlign = 17

ktptFirstIndent = 18

ktptLeadingIndent = 19

ktptMarginLeading = 19

ktptTrailingIndent = 20

ktptMarginTrailing = 20

ktptSpaceBefore = 21

ktptMswMarginTop = 21

ktptSpaceAfter = 22

ktptMarginBottom = 22

ktptTabDef = 23

ktptCustomBullet = 7

ktptRightToLeft = 128

ktptDirectionDepth = 129

ktptFontVariations = 130

ktptNamedStyle = 133

ktptPadLeading = 134

ktptPadTrailing = 135

ktptPadTop = 136

ktptPadBottom = 137

ktptBorderTop = 138

ktptBorderBottom = 139

ktptBorderLeading = 140

ktptMaxLines = 151

ktptCellBorderWidth = 152

ktptCellSpacing = 153

ktptCellPadding = 154

ktptEditable = 155

ktptWsStyle = 156

ktptSetRowDefaults = 159

ktptRelLineHeight = 160

ktptTableRule = 161

ktptWidowOrphanControl =
162

ktptFieldName = 9998

ktptMarkItem = 9999

2.3.8 Time

Time properties store a date and time and are represented as follows:

<DateModified val="2009-9-23 20:53:23.390"/>

This is the DateModified property on CmMajorObject. The time is stored in the “val” attribute in

the format YYYY-MM-DD HH:MM:SS.TTT (TTT is thousandths of a second). This format

should be used regardless of the locale of the computer. If the format is incorrect, usually Tools

> Utilities > Write Everything will fix them.

2.4 Linking properties

Each instance of a class has a guid that identifies that object. There are several ways of

connecting objects together to form entries, interlinear texts, etc. described in the following

sections.

There are two types of linking:

• Owning – most objects are in an ownership hierarchy, normally starting from LangProject.

An object can own any number of objects through owning properties, but each object can

only have one owner.

• Reference – any object can reference other objects through reference properties.

In both cases, linking properties can be of three cardinalities:

• Atomic – links to zero or one other object.

• Collection – links to any number of objects where the order is unspecified at the conceptual

model level. They may be sorted by the program during use.

• Sequence – links to any number of objects where the order is significant.

2.5 Owning relationships

Most objects in FLEx are owned by other objects that eventually lead to LangProject at the top

level of the ownership hierarchy. For example, LangProject has a PartsOfSpeech property that

FLEx Conceptual Model Page 14

6/11/2025

owns a CmPossibilityList object and the CmPossibilityList object has a Possibilities property

that owns PartOfSpeech objects (a subclass of CmPossibility.

Ownership links always involve two links: one from the owner to the owned object, and the

other from the owned object back to the owner. The owning class has an owning property that

holds an objsur (object surrogate) element with a ‘t’ type attribute set to “o” specifying an

owning relationship. The owned object has an ownerguid attribute in the rt header that holds the

guid of the owning class. An object can only have one owning objsur reference from one owner

since an object can never be owned in multiple places.

The following example illustrates how this works where the Discussion owning property in a

CmPossibility owns an StText object which in turn owns one or more StTxtPara objects via the

Paragraphs owning property. The actual text of the paragraph is in the StTxtPara object. In this

case, the StTxtPara does not have a Contents property, so it doesn’t have any text.

<rt class="CmPossibility" guid="80a0dddb-8b4b-4454-b872-88adec6f2aba" ownerguid="d7f71649-
e8cf-11d3-9764-00c04f186933">
...
<Discussion>
<objsur guid="3aeef2e2-9466-41d5-afa7-d569f667fc79" t="o" />
</Discussion>
</rt>

<rt class="StText" guid="3aeef2e2-9466-41d5-afa7-d569f667fc79" ownerguid="80a0dddb-8b4b-4454-
b872-88adec6f2aba">
<Paragraphs>
<objsur guid="9555b62c-51f6-4b2a-ba51-944c5d69f4c1" t="o" />
</Paragraphs>
</rt>

<rt class="StTxtPara" guid="9555b62c-51f6-4b2a-ba51-944c5d69f4c1" ownerguid="3aeef2e2-9466-
41d5-afa7-d569f667fc79">
</rt>

The yellow links show that the StText is owned by the CmPossibilty, but do not give an

indication of the owning property. The green links show that the StText class is owned through

the Discussion property of the CmPossibility, and show that the StTxtPara is owned by the

StText. The blue links show that the StTxtPara is owned through the Paragraphs property of the

StText. Using owning relationships, you can always trace up or down the ownership hierarchy

using the guids. If you want to find the owning object for a guid in fwdata using a text editor,

you can search for

 " guid="<the guid>

If you just search for the guid, you may also get many hits for owning and reference links to the

object.

Owning properties can be Atomic, Collection, or Sequence properties. Atomic owning elements

have zero or one objsur element. Collection owning elements have any number of objsur

elements and the order is unspecified at the conceptual model level. Sequence owning elements

have any number of objsur elements and the order is significant.

Not all objects have ownerguid attributes. Certain objects such as LexEntry and WfiWordform

are unowned. There is only one LexDb in a project, and all LexEntry objects are available

through a virtual property, so we don’t need to store all of the ownerguids and objsurs. All

WfiWordforms were originally owned by a WordformInventory, but since the

FLEx Conceptual Model Page 15

6/11/2025

WordformInventory had no other purpose, it was removed from the model leaving the

WfiWordforms unowned, but again available via a virtual property. The full list of classes that

do not have owners is: LangProject, LexEntry, PunctuationForm, ScrRefSystem, Text,

VirtualOrdering, and WfiWordform. CmPicture and CmPossibilityList may or may not have

owners.

When you delete an object from FLEx, or via LCM code, it deletes the object and all objects in

its ownership hierarchy. This will properly remove the objects plus all owning and reference

links to all of the deleted objects. It’s more challenging to delete objects straight from fwdata

because you need to include all of the objects in the ownership hierarchy and delete them as well.

If you succeed in getting all of the proper rt elements deleted, you can then run Tools > Utilities

> Find and fix… which will clear out all of the orphaned owning and reference objsur links to

those objects.

2.6 Reference relationships

Reference properties provide links to other objects without involving ownership hierarchy.

Reference links are one-way in the model, although using virtual properties, it’s possible to find

objects referencing a given object. When you remove a reference to an object, both objects

remain intact.

Reference properties are similar to owning properties in that both use objsur elements. The

difference is that reference properties use the ‘t’ attribute set to “r” for reference. The following

example demonstrates how senses reference semantic domains through a SemanticDomains

reference collection property.

<rt class="LexSense" guid="e79c8d25-eb3d-43ec-94b7-ccb4fead1d40" ownerguid="d6e17340-dc0f-
458a-9fd6-c8de368918d5">
...
<SemanticDomains>
<objsur guid="ba06de9e-63e1-43e6-ae94-77bea498379a" t="r" />
<objsur guid="191ca5a5-0a67-426e-adfc-6fdf7c2aaa2c" t="r" />
</SemanticDomains>
</rt>

<rt guid="191ca5a5-0a67-426e-adfc-6fdf7c2aaa2c" class="CmSemanticDomain"
ownerguid="dc177f3c-d0fd-4232-adf1-a77b339cdbb2">
<Name>
<AUni ws="en">House</AUni>
</Name>
<Abbreviation>
<AUni ws="en">6.5.1.1</AUni>
</Abbreviation>
...
</rt>

<rt guid="ba06de9e-63e1-43e6-ae94-77bea498379a" class="CmSemanticDomain"
ownerguid="c924bfce-beed-4382-95e8-62b54951c83d">
<Name>
<AUni ws="en">Person</AUni>
</Name>
<Abbreviation>
<AUni ws="en">2</AUni>
</Abbreviation>

FLEx Conceptual Model Page 16

6/11/2025

...
</rt>

The SemanticDomains element of the sense contains two objsur elements. Each one has a ‘t’

attribute set to ‘r’ to indicate it is a reference link. It also contains a guid attribute that matches

the corresponding guid attribute of a CmSemanticDomain object. The yellow semantic domain

link is to the ‘Person’ CmSemanticDomain and the green link is to the ‘House’

CmSemanticDomain.

Unlike an owning property, there is no corresponding link from the CmSemanticDomain back to

the LexSense that references it. A reference link is a one-way link. If you want to find all of the

senses that reference a particular CmSemanticDomain, you would need to search all

SemanticDomains elements looking for ones that have an objsur with a matching guid. In code,

CmSemanticDomain has a ReferringSenses virtual method to return these senses.

Reference collections can also be atomic, collection, or sequence. Atomic reference elements

have zero or one objsur element. Collection reference elements have any number of objsur

elements and the order is unspecified at the conceptual model level. Sequence reference elements

have any number of objsur elements and the order is significant.

Whenever an object is deleted in code, any references to the deleted object are removed from the

referring objects. If something goes wrong and a reference property points to a non-existent

object, FLEx will likely crash at some point. The problem can be fixed easily by closing the

project, opening another project and running Tools > Utilities > Find and fix.. and specify the

desired project. This will remove any orphaned owning and reference links. In the fwdata file,

you would remove any orphaned objsur links. If it’s the only link, remove the reference property

(e.g., SemanticDonains).

2.7 Styles

Default paragraph and character styles are available in all projects. The master list is in

C:\Program Files\SIL\FieldWorks 9\Language Explorer\FlexStyles.xml, but this is mainly used

for upgrading styles when changes are needed. Users can add new styles as needed, or modify

existing styles. Built-in styles cannot be deleted. Styles are hierarchical, so styles based on

another style inherit styles from higher in the hierarchy. Paragraph styles are used in Dictionary

Configuration for formatting elements that are treated as a paragraph which includes entries, and

some other elements such as senses and examples. Character styles can be embedded in strings.

Styles are stored in the Styles owning property of LangProject in StStyle classes.

This shows some of the elements in StStyle. BasedOn is used for hierarchy. The Name is

Unicode, so it is not localizable and is the name that is used in Strings in namedStyle attributes.

Type is 0 for Paragraph and 1 for Character styles.

<rt class="StStyle" guid="7a194e30-4c8c-4934-83ad-b12ecc47a768" ownerguid="af1d4e34-

ea5e-11de-8ec5-0013722f8dec">

<BasedOn>

<objsur guid="7d2c80cd-af87-4d56-8337-cfd389b775bb" t="r" />

</BasedOn>

<IsBuiltIn val="True" />

<Name>

<Uni>Dictionary-Normal</Uni>

FLEx Conceptual Model Page 17

6/11/2025

</Name>

<Rules>

<Prop firstIndent="-12000" leadingIndent="9000" spaceAfter="2000"

spaceBefore="1000"></Prop>

</Rules>

<Type val="0" />

</rt>

Format > Styles is used to make changes to styles.

Styles may override the font that is defined in the Writing System Properties dialog. In the

Normal style, you can specify a font and size for each writing system that affects how it looks in

every location for all colleagues. When you do this, it hard-codes a font for everyone using the

project. When this is not done, each user can assign a different font in Writing System Properties

that will be used only in their version of the project. But if a font is specified in a style, every

user will need to have the font available on their computer for the project to display properly, and

the font sizes and other attributes will apply to all users of the project.

2.8 Possibility lists

Rather than letting users type (and mistype) fixed lists, FLEx stores many lists to allow users to

choose options in various areas, including parts of speech, morpheme types, semantic domains,

people, locations, types for complex forms and minor entries, lexical relations, etc. The class for

these lists is CmPossibilityList, and items in the list can be flat or hierarchical. The base class for

the items is CmPossibility. There are many properties on both of these classes including a

MultiUnicode Name and MultiUnicode Abbreviation. A user can modify some of the properties

of a list in the Lists area by going to Tools > Configure > List. Users can also create custom lists

for special purposes.

List properties include sorting, whether hierarchy is wanted, and if so, how many levels, the

writing system(s) used, whether duplicates are allowed, the class of items to include in the list,

etc. List item properties include a MultiString description, properties for displaying items, etc.

Lists are used in various classes through reference relationships, which may allow a single

reference or multiple references to guids of a CmPossibility.

Here are some key properties for a basic list with 2 nested items.

<rt class="CmPossibilityList" guid="c06b099c-ea5e-11de-890c-0013722f8dec" ownerguid="f0065835-
afbc-477d-9a7c-131f3fa25139">
<ItemClsid val="7" />
<Name>
<AUni ws="en">Genres</AUni>
</Name>
<Possibilities>
<objsur guid="c076f554-ea5e-11de-9793-0013722f8dec" t="o" />
</Possibilities>
<WsSelector val="-3" />
</rt>

<rt class="CmPossibility" guid="c076f554-ea5e-11de-9793-0013722f8dec" ownerguid="c06b099c-
ea5e-11de-890c-0013722f8dec">
<Name>

FLEx Conceptual Model Page 18

6/11/2025

<AUni ws="en">Monologue</AUni>
</Name>
<SubPossibilities>
<objsur guid="c082e102-ea5e-11de-92f2-0013722f8dec" t="o" />
</SubPossibilities>
</rt>

<rt class="CmPossibility" guid="c082e102-ea5e-11de-92f2-0013722f8dec" ownerguid="c076f554-
ea5e-11de-9793-0013722f8dec">
<Name>
<AUni ws="en">Narrative</AUni>
</Name>
</rt>

In this Genres list, we show a Monologue item which has a nested Narrative item. There are two

important properties in the CmPossibilityList

• ItemClsid: Gives the class ID for the items that can be included in this list. 7 in this case is

the class ID for CmPossibility, so this list can only hold CmPossibility objects.

• WsSelector: This selects the writing systems to use when displaying list items for this list. In

this case, we would show all checked analysis writing systems in Analysis Writing System

Properties dialog. The possibilities for this property are:

• -1 The first analysis writing system.

• -2 The first vernacular writing system.

• -3 All checked analysis writing systems.

• -4 All checked vernacular writing systems.

• -5 All checked analysis then all checked vernacular writing systems.

• -6 All checked vernacular then all checked analysis writing systems.

There are 13 subclasses of CmPossibility, mostly to provide additional properties for certain

classes. These are the subclasses with their class ids.

• 5125 ChkTerm (previously used by Translation Editor)
35 CmAnnotationDefn (internal)
26 CmAnthroItem (Anthropology Categories list)
27 CmCustomItem (Custom lists)
12 CmLocation (Locations list)
13 CmPerson (People list)
66 CmSemanticDomain (Semantic Domain list)
5118 LexEntryType (Entry type list)
5113 LexEntryInflType (Entry type list)
5119 LexRefType (Lexical Relations list)
5042 MoMorphType (Morpheme Types list)
5049 PartOfSpeech (Grammatical Category list)
5132 PhPhonRuleFeat (internal Phonological Rule Features list in Grammar, created
dynamically based on exception features and inflection classes)

See ModelDocumentation.chm for more information on the subclasses.

There are some lists that are used internally in the program and do not show up in the Lists area

of FLEx.

All lists, including the internal ones can be exported using File > Export > All lists XML. This

produces one XML file containing all 36 lists, including the internally-used lists and custom lists.

FLEx Conceptual Model Page 19

6/11/2025

The export includes common fields including guids and class ids. Instructions are provided in the

Export dialog for converting this file into an htm file for easy viewing in a browser.

Three lists listed in the Lists area are unique

• Reversal Index Categories. Each reversal index has its own PartsOfSpeech list. This tool in

the Lists area lets you pick one of the reversal indices from a chooser in the title bar, and it

then displays the items in that list for editing.

• Feature Types. This is not really a CmPossibilityList. Instead, it is a list of FsFeatStrucType

objects owned in the Types property of the FsFeatureSystem used in the Grammar area.

• Lexical Relations. This list defines cross references and lexical relations and holds data for

these relations.

This table gives list name, owning object, and owning property for lists in the Lists and Grammar

areas.

List Name Owning Object Owning Property

Academic Domains LexDb DomainTypes

Anthropology Categories LangProject AnthroList

Category (Parts Of Speech) LangProject PartsOfSpeech

Complex Form Types LexDb ComplexEntryTypes

Confidence Levels LangProject ConfidenceLevels

Dialect Labels LexDb DialectLabels

Education Levels LangProject Education

Extended Note Types LexDb ExtendedNoteTypes

Feature Types FsFeatatureSystem Types

Genres LangProject GenreList

Languages LexDb Languages

Lexical Relations LexDb References

Locations LangProject Locations

Morpheme Types LexDb MorphTypes

Notebook Record Types RnResearchNbk RecTypes

People LangProject People

Positions LangProject Positions

Publications LexDb PublicationTypes

Restrictions LangProject Restrictions

Reversal Index Categories ReversalIndex PartsOfSpeech

Roles LangProject Roles

Semantic Domains LangProject SemanticDomainsList

Sense Types LexDb SenseTypes

Status LangProject Status

Text Chart Markers DsDiscourseData ChartMarkers

Text Constituent Chart Templates DsDiscourseData ConstChartTempl

Text Markup Tags LangProject TextMarkupTags

Time of Day LangProject TimeOfDay

Translation Types LangProject TranslationTags

Usages LexDb UsageTypes

Variant Types LexDb VariantEntryTypes

FLEx Conceptual Model Page 20

6/11/2025

2.9 Custom fields

FLEx allows users to create custom fields in Tools > Configure > Custom Fields for the

following classes:

• LexEntry

• LexSense

• LexExampleSentence

• MoForm used in AllomorphIndex on LexDb shown in the Allomorphs section of an entry.

• Segment in interlinear text

• RnGenericRec in data notebook

When a user deletes a custom field, all the data will also be deleted.

When custom fields are defined, an AdditionalFields element is added to the languageproject

element if not already there. AdditionalFields holds CustomField elements, each one defining a

custom field defined by the user that is unique to this project. Here are some possibilities.

<AdditionalFields>
<CustomField name="Weather" class="RnGenericRec" destclass="7" type="RC" wsSelector="-3"
helpString="originally a standard part of Data Notebook records" listRoot="2bdd1159-f9b2-11d3-977b-
00c04f186933" />
<CustomField name=" My Complex String" class="LexEntry" type="String" wsSelector="-1" />
<CustomField name=" My Simple Strings" class="LexEntry" type="MultiUnicode" wsSelector="-3" />
<CustomField name=" My Paragraphs" class="LexEntry" destclass="14" type="OA" />
<CustomField name=" My List Items " class="LexEntry" destclass="7" type="RC" listRoot="d7f713a0-
e8cf-11d3-9764-00c04f186933" />
<CustomField name="My Date" class="LexEntry" type="GenDate" />
<CustomField name="My Number" class="LexEntry" type="Integer" />
</AdditionalFields>

Possible attributes of the CustomField element are

• name—Stores the original user-defined name of the custom field. A custom name is not

allowed if there is already a built-in or custom field with that name.

• label—Added when a user modifies a custom field name. The label is shown in the UI, but

data in fwdata still uses the original name.

• class—Specifies the class name to which the custom field applies.

• destclass—(optional) Specifies the class number of the object owned or referenced by this

field.

• type—Specifies the kind of field. These are the options currently supported in the UI.

• String—Single-line Text (first analysis or vernacular). This field stores a String allowing

embedding (It actually stores MultiString, but the UI limits it to one writing system.)

• MultiUnicode—Single-line Text (all analysis and/or vernacular). This field stores a

MultiUnicode with no embedding.

• OA—Multiparagraph Text. This field stores an owning atomic StText allowing multiple

paragraphs. It works well for Data Notebook, but should probably not be used in the

lexicon (use Shift+Enter instead).

• GenDate—Date. The field holds a generic date stored as an integer. The format is

described in section 2.3.4.

• RC—List Reference (multiple items). This field holds a reference collection to multiple

list items.

FLEx Conceptual Model Page 21

6/11/2025

• RA—List Reference (single item). This field holds an atomic reference to a single list

item.

• Integer—Number. The field holds an integer value

• wsSelector—(optional) This number determines the default writing system(s) for this field.

Possibilities are

• -1—The first analysis writing system.

• -2—The first vernacular writing system.

• -3—All checked analysis writing systems.

• -4—All checked vernacular writing systems.

• -5—All checked analysis then all checked vernacular writing systems.

• -6—All checked vernacular then all checked analysis writing systems.

• Note: Segment only offers Single-line Text with first analysis or vernacular.

• listRoot—For reference properties this holds the guid of the CmPossibilityList (including

custom lists) that owns the items that can be held in this reference property.

• helpString—(optional) This is a user-defined description of how the field is used.

The following examples show how data is stored in custom fields. The name attribute matches

the name attribute of the custom field (not the label that the user sees in the UI).

This is an example of a custom Single-line Text field set to First Analysis or First Vernacular

writing system. The underlying type is a MultiString field, although the UI does not enable more

than one writing system. The string itself can have embedded information.

<Custom name="My Complex String">
<AStr ws="en">
<Run ws="en">This is the field content.</Run>
</AStr>
</Custom>

This is an example of a custom Single-line Text field set to All ... writing systems. The

underlying type is a MultiUnicode field, so it cannot have embedded information. The UI

follows normal writing system rules for MultiUnicode fields.

<Custom name="My Simple Strings">
<AUni ws="en">house</AUni>
<AUni ws="fr">maison</AUni>
</Custom>

This is an example of a Multiparagraph Text custom field. This is always an owning atomic

property that holds one StText. This example only shows the StText guid. The rest of the objects

would be defined as normal <rt> elements.

<Custom name="My Paragraphs">
<objsur guid="c2ac5444-26cf-4318-9e08-1f12d64e173e" t="o" />
</Custom>

This is an example of a List Reference (multiple items) custom field. The underlying type is a

reference collection field which holds references to objects. The (single item) type would be the

same except the UI only allows it to hold one item.

<Custom name="My List Items">
<objsur guid="d7f713a5-e8cf-11d3-9764-00c04f186933" t="r" />
<objsur guid="d7f713a6-e8cf-11d3-9764-00c04f186933" t="r" />
</Custom>

FLEx Conceptual Model Page 22

6/11/2025

This is an example of a date custom field. The underlying type is a GenDate field.

<Custom name="My Date" val="201011171" />

This is an example of a number custom field. The underlying type is an integer field.

<Custom name="Number" val="45" />

2.10 Send/Receive Data

Send/Receive allows users to collaborate in a single FLEx project. For full information on

Send/Receive see

https://downloads.languagetechnology.org/fieldworks/Documentation/Technical%20Notes%20o

n%20FieldWorks%20Send-Receive.pdf.

Although designed for Send/Receive, the format used in Send/Receive may prove more useful

than fwdata for certain purposes. It’s always possible to do a Send/Receive to USB to provide

the Send/Receive format even if you are not normally using Send/Receive to collaborate with

others. With appropriate mercurial commands, it’s possible to make changes to the files and then

load those changes into your FLEx project. This is one way to import a possibility list. See

section 4.8 in the above linked file for details on this.

Before sending to a repository, the fwdata file is split into numerous files based on domains. This

is done to reduce the size of files that need to be merged, and to provide appropriate merge logic

for different kinds of files. In general, the format of the split files is similar to fwdata, however

the significant difference is that instead of each object being a separate rt record as in fwdata, the

files are based on certain objects, and owned objects within those objects.

The fwdata file gets split into these directories, with file extensions for the files in that directory.

Anthropology (.ntbk, .list)

General (.filter, .style, .langproj, .pictures, .orderings, .list)

Lexicon.fwstub

Lexicon.fwstub.ChorusNotes (Messages in entries)

Linguistics

 Discourse (.discourse, .list)

 Inventory (.inventory 10 files)

 Lexicon (.lexdb 10 files, .list)

 MorphologyAndSyntax (.agents, .morphdata, .feasys, .list)

 Phonology (.phondata, .featsys, .list)

 Reversals

 en (.reversal, .list)

 <separate directory for each index>

Here is a simple entry in FLEx with an example sentence and a translation.

Heres how this entry would be stored in .fwdata with some extra fields removed. The rt objects

are sorted by guid, so this is the order they would occur, with many other classes mixed between

these classes. For links to possibilities, I’ve just added the string in {} rather than adding the

actual possibility classes. I’ve also highlighted in green the actual text that appears in the entry

display.

https://downloads.languagetechnology.org/fieldworks/Documentation/Technical%20Notes%20on%20FieldWorks%20Send-Receive.pdf
https://downloads.languagetechnology.org/fieldworks/Documentation/Technical%20Notes%20on%20FieldWorks%20Send-Receive.pdf

FLEx Conceptual Model Page 23

6/11/2025

<rt class="MoStemMsa" guid="3619197f-1bb1-4fc3-93bb-207561a14137" ownerguid="acc2031e-
4ee4-4532-b151-a0b3eae8ece3">
<PartOfSpeech>
<objsur guid="a8e41fd3-e343-4c7c-aa05-01ea3dd5cfb5" t="r" /> {n}
</PartOfSpeech>
</rt>

<rt class="LexSense" guid="5721a00b-2e17-451b-a004-ba02dfb0a761" ownerguid="acc2031e-4ee4-
4532-b151-a0b3eae8ece3">
<Definition>
<AStr ws="en">
<Run ws="en">A house or dwelling.</Run>
</AStr>
</Definition>
<Examples>
<objsur guid="a389fd40-0cc0-440a-b25f-14f54df2c968" t="o" />
</Examples>
<MorphoSyntaxAnalysis>
<objsur guid="3619197f-1bb1-4fc3-93bb-207561a14137" t="r" />
</MorphoSyntaxAnalysis>
</rt>

<rt class="LexExampleSentence" guid="a389fd40-0cc0-440a-b25f-14f54df2c968"
ownerguid="5721a00b-2e17-451b-a004-ba02dfb0a761">
<Example>
<AStr ws="fr">
<Run ws="fr">Il a quitté la maison à 21 ans.</Run>
</AStr>
</Example>
<Translations>
<objsur guid="f046a4dc-ae1f-4fbe-89cc-41e8d2ca31f6" t="o" />
</Translations>
</rt>

<rt class="LexEntry" guid="acc2031e-4ee4-4532-b151-a0b3eae8ece3">
<Custom name="Date" val="0" />
<LexemeForm>
<objsur guid="dd9a2fcf-28b9-451b-aad9-5ff92837549e" t="o" />
</LexemeForm>
<MorphoSyntaxAnalyses>
<objsur guid="3619197f-1bb1-4fc3-93bb-207561a14137" t="o" />
</MorphoSyntaxAnalyses>
<Senses>
<objsur guid="5721a00b-2e17-451b-a004-ba02dfb0a761" t="o" />
</Senses>
</rt>

<rt class="MoStemAllomorph" guid="dd9a2fcf-28b9-451b-aad9-5ff92837549e" ownerguid="acc2031e-
4ee4-4532-b151-a0b3eae8ece3">
<Form>
<AUni ws="fr">maison</AUni>
</Form>
<MorphType>
<objsur guid="d7f713e8-e8cf-11d3-9764-00c04f186933" t="r" /> {stem}
</MorphType>
</rt>

FLEx Conceptual Model Page 24

6/11/2025

<rt class="CmTranslation" guid="f046a4dc-ae1f-4fbe-89cc-41e8d2ca31f6" ownerguid="a389fd40-
0cc0-440a-b25f-14f54df2c968">
<Translation>
<AStr ws="en">
<Run ws="en">He left home when he was 21.</Run>
</AStr>
</Translation>
<Type>
<objsur guid="d7f7164a-e8cf-11d3-9764-00c04f186933" t="r" /> { Free translation}
</Type>
</rt>

Here’s the same sample in a .lexdb file used in Send/Receive. In this format, all of the owned

objects for the entry and sense are included inside the owned objects rather than scattered around

in fwdata, thus ownerguid is not needed. It’s also indented to see the hierarchy. Deleting an entry

is much easier because you just need to delete everything between <LexEntry and </LexEntry>.

 <LexEntry
 guid="acc2031e-4ee4-4532-b151-a0b3eae8ece3">
 <LexemeForm>
 <MoStemAllomorph
 guid="dd9a2fcf-28b9-451b-aad9-5ff92837549e">
 <Form>
 <AUni
 ws="fr">maison</AUni>
 </Form>
 <MorphType>
 <objsur
 guid="d7f713e8-e8cf-11d3-9764-00c04f186933" {stem}
 t="r" />
 </MorphType>
 </MoStemAllomorph>
 </LexemeForm>
 <MorphoSyntaxAnalyses>
 <MoStemMsa
 guid="3619197f-1bb1-4fc3-93bb-207561a14137">
 <PartOfSpeech>
 <objsur
 guid="a8e41fd3-e343-4c7c-aa05-01ea3dd5cfb5" {n}
 t="r" />
 </PartOfSpeech>
 </MoStemMsa>
 </MorphoSyntaxAnalyses>
 <Senses>
 <ownseq
 class="LexSense"
 guid="5721a00b-2e17-451b-a004-ba02dfb0a761">
 <Definition>
 <AStr
 ws="en">
 <Run
 ws="en">A house or dwelling.</Run>
 </AStr>
 </Definition>
 <Examples>
 <ownseq

FLEx Conceptual Model Page 25

6/11/2025

 class="LexExampleSentence"
 guid="a389fd40-0cc0-440a-b25f-14f54df2c968">
 <Example>
 <AStr
 ws="fr">
 <Run
 ws="fr">Il a quitté la maison à 21 ans.</Run>
 </AStr>
 </Example>
 <Translations>
 <CmTranslation
 guid="f046a4dc-ae1f-4fbe-89cc-41e8d2ca31f6">
 <Translation>
 <AStr
 ws="en">
 <Run
 ws="en">He left home when he was 21.</Run>
 </AStr>
 </Translation>
 <Type>
 <objsur
 guid="d7f7164a-e8cf-11d3-9764-00c04f186933" {Free translation}
 t="r" />
 </Type>
 </CmTranslation>
 </Translations>
 </ownseq>
 </Examples>
 <MorphoSyntaxAnalysis>
 <objsur
 guid="3619197f-1bb1-4fc3-93bb-207561a14137"
 t="r" />
 </MorphoSyntaxAnalysis>
 </ownseq>
 </Senses>
 </LexEntry>

LIFT is not being discussed in this document, but for comparison, this is how this entry would

look in LIFT. Documentation for LIFT is in

https://downloads.languagetechnology.org/fieldworks/Documentation/Technical%20Notes%20o

n%20LIFT%20used%20in%20FLEx.pdf. FLEx can import and export LIFT format.

<entry dateCreated="2024-04-05T15:20:42Z" dateModified="2024-04-05T15:22:50Z"
id="maison_acc2031e-4ee4-4532-b151-a0b3eae8ece3" guid="acc2031e-4ee4-4532-b151-
a0b3eae8ece3">
<lexical-unit>
<form lang="fr"><text>maison</text></form>
</lexical-unit>
<trait name="morph-type" value="stem"/>
<trait name="do-not-publish-in" value="Zook"/>
<sense id="5721a00b-2e17-451b-a004-ba02dfb0a761">
<grammatical-info value="Noun">
</grammatical-info>
<definition>
<form lang="en"><text>A house or dwelling.</text></form>
</definition>

https://downloads.languagetechnology.org/fieldworks/Documentation/Technical%20Notes%20on%20LIFT%20used%20in%20FLEx.pdf
https://downloads.languagetechnology.org/fieldworks/Documentation/Technical%20Notes%20on%20LIFT%20used%20in%20FLEx.pdf

FLEx Conceptual Model Page 26

6/11/2025

<example>
<form lang="fr"><text>Il a quitté la maison à 21 ans.</text></form>
<translation type="Free translation">
<form lang="en"><text>He left home when he was 21.</text></form>
</translation>
</example>
</sense>
</entry>

3 Conceptual model resources

There are various tools and resources that can help with understanding the FLEx model and data.

One way to see how something is modeled in FLEx is to search the fwdata file to see what is in

the file for a particular object. You could type some unique string in the area you are interested

in, and then search for that in fwdata. For an entry, you can Ctrl+right-click the entry in the

dictionary or dictionary preview, and choose Inspect Entry. This opens a window with the entry

guid at the top, and the xhtml data at the bottom.

In FLEx, Tools > Utilities > “Find and fix errors in a FieldWorks Data (XML)” will remove any

links to non-existent objects. It will also delete objects that are missing owners. This can correct

occasional problems that occur within the program, but is also useful for manual editing the

fwdata file. If you delete a LexEntry rt object and then Run this utility, it will remove all of the

ownership links, delete all objects that were owned by the entry, and remove all references to any

of the deleted objects. To run the Find and Fix Utility, you need to close the target project, then

open another project and run the utilities from that project specifying the target file for the utility.

The Write Everything utility will rewrite the current project fwdata in the standard way which

will clean up manual changes that may be missing some null properties, improperly formatted

dates, etc.

ZEdit.exe is a simple editor that is installed with FieldWorks and is available by typing Zedit

into Windows Start or find it in c:\Program Files\SIL\FieldWorks 9. It memory-maps the data

when a file is opened, so it can open large fwdata files very quickly and can be used to make

changes. Just be sure to close the fwdata file before trying to do anything in FLEx that tries to

update fwdata, or FLEx will be blocked. Notepad++ takes a lot longer to open a file, but it can

remain open while FLEx is being used. One of its advantages is supporting regex for search and

replace. In any text editor you can find the desired class by searching for

 " guid=" followed by the guid.

3.1 Model diagram chm

A useful model diagram can be downloaded from

https://downloads.languagetechnology.org/fieldworks/Documentation/ModelDocumentation.ch

m. If you are using Windows 10 or 11, the file will be blocked by Windows after a download. To

enable it, right-click the downloaded file and choose Properties, then check the “unblock” box.

Unfortunately, the program that was used to develop this disappeared many years ago, so we

haven’t been able to keep it up with the latest changes. However, for the most part it is still

accurate and helpful. Interlinear text is not correct, and directional links for reversal indexes are

wrong, and some newer things are missing. It also has all of the classes for Scripture used by

https://downloads.languagetechnology.org/fieldworks/Documentation/ModelDocumentation.chm
https://downloads.languagetechnology.org/fieldworks/Documentation/ModelDocumentation.chm

FLEx Conceptual Model Page 27

6/11/2025

Translation Editor which no longer exists. Basic Scripture classes are still used when loading

data from Paratext, but most of the other classes are unused.

The chm file has a Diagrams link in the upper left pane that lists 25 diagrams for different areas

of the model. Here’s part of the Lexical Database diagram.

Properties inside the class box are basic properties. Links are shown with lines between boxes,

starting with a diamond for owning relations and no diamond for reference properties.

Somewhere along the link lines, usually at the destination, there is a number indicating how

many objects can be linked with this property. 1 means it’s atomic and 0..* means it’s a sequence

or a collection. A sequence property has (ordered) along the line. The property name is given

above the line, usually at the source. Class hierarchy is shown sometimes, but not always.

Here is a diagram of lists that does show the class hierarchy

FLEx Conceptual Model Page 28

6/11/2025

The vertical lines with an open arrow are class hierarchy lines with the arrow pointing to the

superclass.

If you click a property line linking classes, it will show information for that property. The

Association End information is no longer relevant.

FLEx Conceptual Model Page 29

6/11/2025

If you click a class, it shows basic, owning, and reference attributes along with Back references.

Back references are no longer relevant (that was in SQL Server) but the other fields

FLEx Conceptual Model Page 30

6/11/2025

“There is a Show All docs” and “Hide All docs” button at the top that shows or hides

documentation for properties. Or if you click one of the right triangles at the left of the property

it shows the documentation for that property. Note that class numbers are actually formed by a 1-

digit module number and a 3-digit class number within the module. Module 5 is for Linguistics

and the number for LexEntry is 2, so the class number for LexEntry is 5002.

3.2 Model class/property spreadsheet

If you download the source code liblcm (SIL Language & Culture Model), the

MasterLCModel.xml file is the current master file with information on all classes and properties

with some documentation. This is located in liblcm\SIL.LCModel\src. MasterLCModel.xsd

FLEx Conceptual Model Page 31

6/11/2025

defines the XML structure in this file. You can get to this file directly from

https://github.com/sillsdev/liblcm/blob/master/src/SIL.LCModel/MasterLCModel.xml.

The information for this model file has been put into a spreadsheet that can be downloaded from

https://downloads.languagetechnology.org/fieldworks/Documentation/MasterFieldWorksModel

%20classes%20and%20fields%207000072.xlsx. This spreadsheet is one way you can find

accurate information for all classes and fields. This spreadsheet has two tabs, one for classes and

the other for fields. The labels along the top all have dropdown menus that let you sort on that

column, or you can use normal Data tab Sort and Filter options in Excel for custom filters or

sorting.

The Classes tab has these columns that come from the master model file.

• Clsid; This is the class id (comes from the module and the class number).

• Class: The name of the class.

• Base: The base class for this class in the class hierarchy.

• Depth: The depth in the class hierarchy from CmObject.

• Abstract: True means the class cannot occur in data. Only subclasses can exist. False means

this class can occur in data.

• Abbr: This is an abbreviation for the class. It’s no longer used.

• Singleton: This is true if only one occurrence can occur in a project.

• Owner: None means there is never an owner for this class in the ownership hierarchy.

Optional means there may or may not be an owner.

• GenCreate: When false, this class cannot be created in code with a Create() method. Check

for required parameters in overrides in both the factory and the class overrides.

• Comment: Documentation for this class.

The Fields tab has these columns that come from the master model file.

• Flid The field id which includes the module and class numbers.

• Class: The class name.

• Field: The field name:

• Type: The type of field: bas for basic, own for owning, rel for reference relation.

• Card: Cardinality for owning and reference, atomic, col for collection, and seq for sequence.

• Sig: Signature of target.

• Basic type: Binary, Boolean, Guid, Integer, MultiString, MultiUnicode, String,

TextPropBinary, Time, Unicode

• Owning and reference types: The class name of the object in this property. When a class

is listed here, any subclass in the class hierarchy is valid for this property.

• Big: Unused since leaving SQL Server.

• Min: For Integer properties, this is the minimum value.

• Max: For Integer properties, this is the maximum value.

• Comment: Documentation for this field.

With this spreadsheet, you can easily find answers to common questions:

• What are all of the properties for a given class? In the Fields tab sort the class names and find

the class(es) of interest.

https://github.com/sillsdev/liblcm/blob/master/src/SIL.LCModel/MasterLCModel.xml
https://downloads.languagetechnology.org/fieldworks/Documentation/MasterFieldWorksModel%20classes%20and%20fields%207000072.xlsx
https://downloads.languagetechnology.org/fieldworks/Documentation/MasterFieldWorksModel%20classes%20and%20fields%207000072.xlsx

FLEx Conceptual Model Page 32

6/11/2025

• What classes are subclasses of a given class? A possible answer can be found in the Classes

tab by sorting on the Base. It’s more complicated when there are multiple levels under a

class.

• What are the class or field IDs? They are the first column of both tabs. If you have an ID and

want to know what it’s for, you can sort the ids and find it or search in the ID column to find

it.

• What kind of strings are in given fields? This can be found in the Fields tab looking in the

Sig column.

3.3 LCMBrowser

LCM is an abbreviation for SIL Language & Culture Model. LCMBrowser.exe is a program that

comes with FieldWorks and can be started by typing into the Windows start menu or finding it in

c:\Program Files\SIL\FieldWorks 9. The program has a tab for showing the current conceptual

model. You can open a fwdata file and it lets you browse the data, and make limited

modifications, such as deleting an object.

3.3.1 LCM model

When LCMBrowser opens, it has an LCM Model tab. This tab displays the class hierarchy of all

classes in the FieldWorks model. The class number follows each class name in parentheses. In

the left pane you can open classes with a + to show subclasses. The following display shows all

of the subclasses of CmPossibility. The right pane shows the properties (fields) of the selected

class, which is CmPossibility in this case. It shows that the first 4 properties are inherited from

CmObject, and the remaining ones are defined on CmPossibility. The columns show the class

that defines the property, the field ID (flid) of the property, the name of the property, the type,

and the Signature. Types are O (owing) or R (reference) followed by A (atomic), C (collection),

or S (sequence).

FLEx Conceptual Model Page 33

6/11/2025

The View menu has a toggle option for “Display Virtual Properties” which is turned off in the

above graphic, so you are seeing actual fields in the model that may contain data. When turned

on, it also shows virtual properties. These are methods on the class that will return some result

from FLEx code. They include (Virt) after the type. For example, there is an Owner property on

every object that will return the object that owns the given object.

3.3.2 LCM data

To see the data in an actual project, choose File > Open Language Project, and navigate to an

.fwdata file to open. Note, you cannot open a project that is open in FLEx, or one that has an

.fwdata.lock file in the directory. The program will bring up an unhandled exception dialog

saying you can open a project that is open. When a project is open in LCMBrowser, the lock file

FLEx Conceptual Model Page 34

6/11/2025

is used to block FLEx from opening the project, and any changes you make to the data will be

saved automatically just as in FLEx.

LCMBrowser has some problems with custom fields.

When a project is open, two additional tabs are available: <Project>: LangProj, and <Project>:

Repositories.

The LangProj tab shows the class ownership hierarchy starting at LangProj, + expansion boxes

can be clicked to open further into the ownership hierarchy. Ownership and Reference class

names have markers appended to indicate the type of property: O (Owning) or R (Reference)

followed by A (Atomic), C (Collection), or S (Sequence). You can find LexEntry objects by

opening LexDbOA and then open Entries to see the entries. Since the model does not have an

Entries owning property, you have to have “Display Virtual Properties” checked in the View

menu in order to see the Entries property. The middle column shows the Value, or a count

objects in the property for owning and reference attributes. The right column shows the Type of

object being viewed.

The Repositories tab lists all of the classes in the model with a count of the number of objects

using this class. A + expansion box to the left can be opened to see a list of the objects in that

class.

The only searching capability in LCMBrowser is a GUID search capability. If you enter a GUID

in this search box it will open a new window on the object with this GUID. To get a GUID for

lexical entries in FLEx, you can Ctrl+Right-click the entry in a dictionary or dictionary preview

and choose Inspect Entry. This opens a dialog with the GUID at the top and then the xhtml view

below that.

FLEx Conceptual Model Page 35

6/11/2025

In the view of all objects, you can continue to drill down into the structure until you get to basic

objects. Here’s an example that gets down into a Definition MultiString

It is possible to delete objects in LCMBrowser, which will delete the object along with all owned

objects and any references to those objects. There is no way to delete scripture objects in FLEx,

but it can be done in LCMBrowser. This can be especially helpful if you are having trouble

importing a book from Paratext. Usually deleting the book will then allow it to import correctly.

To do this in the LangProj tab, open TranslatedScriptureOA, then open ScriptureBooksOS. This

will list the ScrBook objects, if there are any. The book names will be shown in the Value

column. Find the book you want to delete and right-click it, then choose “Delete the selected

object”.

3.4 Fieldworks source code

FieldWorks is an open source project, so all source code is available to anyone that wants it. You

can open sources directly from github in a browser, or you can download the sources using Git

(https://git-scm.com/). With the source code downloaded you can search all files for class names,

https://git-scm.com/

FLEx Conceptual Model Page 36

6/11/2025

methods, etc. to try to understand how certain things are used in code. The program sources are

in https://github.com/sillsdev/.

The following repositories are needed for FieldWorks code

• https://github.com/sillsdev/FieldWorks: The main FieldWorks code

• https://github.com/sillsdev/chorus: A library for using Send/Receive

• https://github.com/sillsdev/liblcm: A library with the basic FieldWorks model code. Most

code that is relevant for FlexTools is in this repo.

• https://github.com/sillsdev/libpalaso: A library with various things FLEx uses.

• https://github.com/sillsdev/flexbridge: The source code for FLEx Bridge for doing S/R.

To get the source code using a Git Bash window, use this command:

 git clone https://github.com/sillsdev/FieldWorks fw

where the appropriate repo is used from the above list, and the final argument is the target

directory to create for the downloaded repo. The master branch is usually the appropriate branch

to use in the repos.

FieldWorks can be built on Windows using a free Visual Studio Community Edition. For more

information about building FieldWorks, see

 https://github.com/sillsdev/FwDocumentation/wiki

Debugging can also be done without installing any program using dnSpy.

3.5 dnSpy debugger

If interested in exploring FLEx using a debugger, there is a free .NET debugger that can be used

on any machine without installing any software. You just unzip a download into a directory and

run the debugger from the directory.

To setup dnSpy

1. Download dnSpy-net-win64.zip from https://github.com/dnSpy/dnSpy/releases.

2. Unzip the file into a directory.

3. Run dnSpy.exe from the unzipped directory.

4. Drag C:\Program Files\SIL\FieldWorks 9\FieldWorks.exe into the left Assembly Explorer

pane in dnSpy.

To run the debugger.

1. Shut down Fieldworks if it is running.

2. Right-click FieldWorks in the Assembly Explorer.

3. Choose “Go to Entry Point”.

4. Click the Start button at the top, or press F5.

5. A dialog is opened for command line arguments. Typically, you can just click OK.

6. FieldWorks opens and you can start working. At any time you can break execution in the

debugger to investigate where it is, look through the stack, set breakpoints, etc.

4 Lexicon model

Lexical data is owned by LangProject in the LexDb property. This property holds a single LexDb

object that holds information relevant to the lexicon. It owns these Possibility Lists that are

referenced from objects in the lexical database.

https://github.com/sillsdev/
https://github.com/sillsdev/FieldWorks
https://github.com/sillsdev/chorus
https://github.com/sillsdev/liblcm
https://github.com/sillsdev/libpalaso
https://github.com/sillsdev/flexbridge
https://github.com/sillsdev/FwDocumentation/wiki
https://github.com/dnSpy/dnSpy/releases

FLEx Conceptual Model Page 37

6/11/2025

LexDb Property Name Name in Lists area

SenseTypes Sense Types

References Lexical Relations

PublicationTypes Publications

MorphTypes Morph Types

Languages Languages

UsageTypes Usages

ExtendedNoteTypes Extended Note Types

VariantEntryTypes Variant Types

DialectLabels Dialect Labels

ComplexEntryTypes Complex Form Types

DomainTypes Academic Domains

Entries do not have owners, but can be accessed from LexDb via a virtual Entries method or the

ILexEntry repository..

FLEx uses reference links between different objects, and when information is displayed, it pulls

information from each object as it is needed for the display. FLEx also removes any links to

objects that get deleted. As a result, the data displayed is always current. If a headword changes,

or the homograph numbers change, or sense numbers change, all references to that entry will

automatically match the new state of the data.

4.1 Entries

LexEntry is the class for lexical entries. This class is used for main entries that show as

headwords in the dictionary, and also for entries that are variants or complex forms of the main

entries. Entries keep track of date/time created and modified.

The LexEntry class includes the following types of strings.

Name Signature

CitationForm MultiUnicode

Bibliography MultiString

Restrictions MultiString

SummaryDefinition MultiString

LiteralMeaning MultiString

Comment (Note) MultiString

ImportResidue String

Every LexEntry must have a reference to a MoMorphType item in the Morpheme Types list.

There are 19 possibilities in this list. This list is fixed, meaning you can’t add or delete any items

because FLEx code depends on having each entry assigned to one of these. There are actually

two types; stem and affix types.

Stem types Affix types

bound root circumfix

bound stem infix

clitic infixing interfix

discontiguous phrase prefix

FLEx Conceptual Model Page 38

6/11/2025

enclitic prefixing interfix

particle simulfix

phrase suffix

proclitic suffixing interfix

root suprafix

stem

Every LexEntry must have a MoForm object in the LexemeForm property. This object actually

holds the reference to a morph type in the MorphType reference property. But MoForm is

actually abstract as well as MoAffixForm, so there are only 3 choices to use. For stem type

morphemes, MoStemAllomorph is used. For affix types, MoAffixAllomorph is normally used,

but MoAffixProcess is another option.

A second required part of every LexEntry, if it owns a sense, is owning at least one

MoMorphSynAnalysis object in the MorphoSyntaxAnalyses collection property.

MoMorphSynAnalysis is also an abstract class, so one of its subclasses must be used. For stem

type morphemes, MoStemMsa is used. For affix types, MoDerivAffMsa, MoInfAffMsa, or

MoUnclassifiedAffixMsa are used. These classes deal with grammatical information. Senses

need to reference these objects to show grammatical information. If senses for the entry have

different grammatical information, then additional MoMorphSynAnalysis objects will be added

to the entry so they can be referenced by the senses. These items are removed when senses that

use them are deleted.

In summary, both the MoForm and the MoMorphSynAnalysis objects depend on whether the

entry is a stem type or an affix type. The Choose Morpheme Type dialog that comes up when

you click the Morph Type button normally only shows morph types that are in the same group.

When that happens, the change is minimal. If they click the “Show all types” checkbox, all

morph types are shown, and if they choose one from the other set, the program will replace the

MoForm and MoMorphSynAnalysis objects to the opposite type with new guids. If these two

ever get out of sync, it causes problems.

Here’s a simple entry to demonstrate a stem-based entry which appears like this in FLEx.

FLEx Conceptual Model Page 39

6/11/2025

The LexEntry (with guid starting with 873d in my sample project) owns a MoStemAllomorph

that has a Form “garçon” and a MorphType reference to a MoMorphType with Name: “stem”.

LexEntry owns a MoStemMsa that references a PartOfSpeech with Abbreviation: “n”. LexEntry

also owns a LexSense with a Gloss: “boy”, and a MorphoSyntaxAnalysis reference to the

MoStemMsa.

Here’s a simple entry to demonstrate an affix-based entry which appears like this in FLEx.

The LexEntry (with guid starting with 8ce9) owns a MoAffixAllomorph that has a Form “s” and

a MorphType reference to a MoMorphType with Abbreviation: “sfx” and Prefix: “-“. The

Headword display inserts the Prefix string before the MoForm Form. LexEntry owns a

MoInflAffMsa that references a PartOfSpeech with Abbreviation: “n”. LexEntry also owns a

FLEx Conceptual Model Page 40

6/11/2025

LexSense with a Gloss: “PL”, and a MorphoSyntaxAnalysis reference to the MoInflAffMsa. The

display for the inflectional affix displays the category followed by the morph type abbreviation.

All of the strings in the above examples are MultiUnicode, so they can have any number of

vernacular or analysis writing systems. Most strings in LexEntry and LexSense are either

MultiUnicode or MultiString.

4.1.1 Headwords

A headword is a word or phrase that is placed at the beginning of the entry to help the user

quickly find the word they are looking for. Entries are also sorted by headwords. A headword in

FLEx is a virtual property that joins several properties from several classes. Properties that are

relevant to a headword are:

• LexemeForm owning property on LexEntry

• CitationForm MultiUnicode on LexEntry

• HomographNumber integer on LexEntry

• Form MultiUnicode on MoForm owned in the LexemeForm property of LexEntry

• Prefix Unicode on MoMorphType referenced from MoForm via MorphType (shown as

‘Leading Token’ in the Lists area)

• Postfix Unicode on MoMorphType referenced from MoForm via MorphType (shown as

‘Trailing Token’ in the Lists area)

• SecondaryOrder integer on MoMorphType referenced from MoForm via MorphType

During interlinearization, the lexeme form is used to identify the morphemes within a word (e.g.,

‘cat’ and ‘-s’ for ‘cats’). Some languages prefer to use an inflected form of the stem instead of

the raw stem form for the dictionary headword. For example, the French ‘mang’ lexeme form

would use the infinitive form, ‘manger’, for the headword. In FLEx, the citation form is used for

this, but it should only be used if the headword needs something different from the lexeme form.

Some languages prefer to only use citation forms without a lexeme form in their FLEx project.

It’s not possible to create an entry in the FLEx UI without a lexeme form. This is because the

MoForm in the LexemeForm field is required for other purposes. After the entry is created, you

can remove the form in the lexeme form field and it will work OK. For SFM import you can

import identical lexeme form and citation form fields, and then clear out all of the lexeme form

fields after import.

Here is an example showing how infix -in-2 would be stored:

If there is a CitationForm, the headword will use that form. Otherwise it will use the

LexemeForm (actually the Form from the MoForm owned in the LexemeForm). If there is no

CitationForm, then the Prefix and Postfix markers are added to the LexemeForm. If there is a

HomographNumber, that is appended at the end.

FLEx Conceptual Model Page 41

6/11/2025

When sorting headwords, FLEx sorts by the form of the headword without affix markers

followed by the SecondaryOrder from the MoMorphType, followed by the HomographNumber.

SecondaryOrder allows you to order affixes by type, and uses a different homograph number.

HomographNumbers are maintained automatically by FLEx. Homograph numbers will be

applied to headwords that have an identical form and SecondaryOrder. You can force

renumbering homographs in FLEx using Tools > Utilities > Reassign Homographs. Sometimes

you have to use Refresh to get homograph numbers to display correctly after a change.

Homograph numbers are automatically adjusted during dictionary views where some entries are

excluded from the dictionary.

4.1.2 Pronunciations

There are basically two ways to store pronunciations in FLEx.

• If there is only one pronunciation per entry, you can use the lexeme form or citation form

property using the ‘audio’ writing system, where the code for the writing system is fr-Zxxx-

x-audio for a French recording, and the content is a file name that must be in the project

LinkedFiles\AudioVisual directory. FLEx has a button that will record a sound in these

fields, or you can attach an existing recording.

• If you have multiple recordings per entry, and/or want to include other information along

with the pronunciation, then you can add one or more LexPronunciation objects.

Here’s an example of an entry with a pronunciation including a location

This example shows both possibilities for a pronunciation. Normally you would not have both

options.

• The first option is using an audio writing system in the LexemeForm field. This option does

not include the 4 classes below and to the right of MoStemAllomorph. The structure is very

simple in this case. The audio file name is in the fr-Zxxx-x-audio writing system of the

MoStemAllomorph Form field. This was recorded using the record button. The record button

in FLEx will only write .wav files, but can play .mp3 as well.

FLEx Conceptual Model Page 42

6/11/2025

• You can add one or more LexPronunciation objects to the Pronunciations field of LexEntry.

The LexPronunciation Form MultiUnicode field is storing the form in the fr-fonipa writing

system. You can also include a CVPattern in a String field, and a Tone in a String field. The

Location field lets you reference one CmLocation item in the Locations list. The MediaFiles

property is an owning sequence which holds CmMedia objects. CmMedia has a Label

MultiString field which isn’t supported in the FLEx interface. It also has a MediaFile

reference to one CmFile object. The CmFile object has an InternalPath Unicode property that

holds the name of the audio file. In this case, it needs to include the path from the

LinkedFiles folder inside the project folder. The files can be in other locations in this case.

The CmFile object is owned in a CmFolder named “Local Media” that is owned by the

Media owning collection property of LangProject.

4.1.3 Etymology

LexEntry has an owning sequence Etymology property that can hold multiple LexEtymology

objects. These are the fields that are available. All except Source Language are MultiString fields

that default to first analysis writing system, except Source Form defaults to vernacular and

analysis. Source Language allows multiple references to the Languages list.

Data Entry Field Property Name

Preceding Annotation PrecComment

Source Language Language

Source Language Notes LanguageNotes

Source Form Form

Gloss Gloss

Following Comment Comment

Bibliographic Source Bibliography

Etymology Note Note

When you start typing to open a LexEtymology object, you are typing in the first analysis

writing system in the Source Form field.

4.1.4 Allomorphs

Allomorphs are used to enter and constrain alternate forms of a lexeme form, especially for

parsing situations. Allomorphs are stored as MoForm (MoStemAllormorph or

MoAffixAllomorph) objects in the AlternateForms owning sequence property of LexEntry.

For example, consider an allomorph ‘z’ for plural entry with lexeme form -s. In English, when

the plural follows a vowel or voiced consonant, the plural is also voiced so could be represented

as a -z allomorph in this context.

This example gets into the Grammar area of FLEx a well as the lexicon. We start with a list of

phonemes in the language. In the grammar you can list all of the phonemes in the language in the

Phonemes tool.

FLEx Conceptual Model Page 43

6/11/2025

These phonemes are represented by PhPhoneme objects, owned in the Phonemes property of

PhPhonemeSet, owned in the PhonemeSets property of PhPhonData, which is owned in the

PhonologicalData property of LangProject. The PhPhoneme gives the linguistic description of

the phoneme. The letter(s) in the orthography that represent this phoneme are stored in PhCode

objects with a Name identifying the phoneme. There are other phonemes in addition to what is

shown here.

In order to provide a phone environment that applies to this allomorph, we need to define a

natural class for voiced phonemes in the Natural Classes tool in the Grammar area.

This is stored in a PhNCSegments object with a name (+Voiced) and abbreviation (VD). The

Segments reference property references all of the PhPhoneme objects that are voiced.

Next is defining an environment for the allomorph in the Environments tool in the Grammar

area. This rule states that the environment for the allomorph is that it must follow a voiced

phoneme.

FLEx Conceptual Model Page 44

6/11/2025

This is stored in a PhEnvironment class with a name (Preceding voiced), and a

StringRepresentation that gives a linguistic representation of the environment (/ _ [VD]) This

string is parsed by FLEx to make sure it is valid. In this case, the VD matches the abbreviation in

the PhNCSegments object.

Now back in the lexicon, in the Allomorphs section of the -s entry, we then create a suffix

allomorph with z in the form and the Environments set to the environment.

In the following diagram, the allomorph is represented by a MoForm (MoAffixAllomorph in this

case) owned in the AlternateForms property of LexEntry, with the form (z), MorphType

referencing the suffix MoMorphType, and PhoneEnv referencing the “Preceding voiced”

PhEnvironment. There are other grammatical properties on MoAffixAllomorph that are not

shown in this example to further specify where it can be used. This includes Inflection Classes,

and Required Features in the FLEx UI.

This is combined diagram in FLEx.

FLEx Conceptual Model Page 45

6/11/2025

4.1.5 Grammatical information.

In its simplest form, Grammatical Information just references a PartOfSpeech object in the

Categories list. For parsing situations, it can include other information that restricts where it can

be used. This information is entered in the Grammatical Info Details section at the bottom of an

entry. This includes inflection classes and features, exception features, etc. Most of these features

are discussed briefly in section 5.

4.1.6 Messages

Although not part of the FLEx conceptual model, FLEx does have a messaging capability on

LexEntry. It’s primarily designed for users doing Send/Receive to have a place where they can

ask questions of their colleagues, get feedback, and then resolve the message when done. It uses

the FLEx Bridge Send/Receive capability, but it can be used without actually doing

Send/Receive, and it gets saved in a FLEx backup. This is how it looks when there is a message

on an entry.

FLEx Conceptual Model Page 46

6/11/2025

When you click the blue button, it opens the “Question about” dialog showing the status of the

message(s).

When resolved, the icon changes to

Clicking that button gives history.

The data for questions is stored in Lexicon.fwstub.ChorusNotes in the project folder. The

information is stored in annotation elements. Responses and closing information is included as

additional message elements.

<annotation
 class="question"

ref="silfw://localhost/link?app=flex&database=current&server=&tool=default&guid
=873de097-9b80-487e-a866-0b99831b4b7e&tag=&id=873de097-9b80-487e-a866-
0b99831b4b7e&label=garçon"

FLEx Conceptual Model Page 47

6/11/2025

 guid="73abfec0-5214-4ace-964d-a6eb990af1b1">
 <message
 author="zook"
 status=""
 date="2024-04-29T09:33:34-05:00"
 guid="8303724a-01b4-4f66-ab4a-0275d9020000">I need to do more research on
garçon.</message>
 <message
 author="zook"
 status=""
 date="2024-04-29T09:47:13-05:00"
 guid="261d5ba3-c665-4870-b604-758ae640bf55">Here is an answer.</message>
 <message
 author="zook"
 status="closed"
 date="2024-04-29T09:47:22-05:00"
 guid="9df8eacc-d0be-46c3-813c-555ab3e06ed6"></message>
</annotation>

The message guid attributes are IDs for the actual message. The ref link at the top allow a user to

click a link to jump to the entry. The guid in this reference is the guid of the LexEntry.

There is no capability built into FLEx for removing information from this ChorusNotes file. Data

can be removed manually in the file, or the file can be deleted at any time to remove all

Messages.

4.2 Complex forms and variants

Variants and complex forms (typically subentries) are stored as separate entries in FLEx that are

linked to one or more main entries. There are numerous options for displaying complex forms

and variants.

4.2.1 Complex forms

This is the display of a main entry and a complex form as a subentry and a minor entry in Root-

based view. Showing minor entries is optional. The minor entry can show more information, but

typically it’s just a small entry that tells the user where they can find the full entry.

By switching the display to Lexeme-based view, we get this display, where each entry is

displayed as an entry in the lexicon with references to the complex form and the main entry.

Here is how the data is stored in FLEx for a complex form.

FLEx Conceptual Model Page 48

6/11/2025

The main entry and complex form entry contain typical information in entries and senses. The

part that makes the bottom entry a complex form, or subentry, is adding a LexEntryRef in the

EntryRefs owning property. In the LexEntryRef:

• RefType is set to 1 to indicate this is a complex form.

• Hide Minor Entry is set to 0 so that the minor entry will show. In the UI, this is controlled by

the Show Minor Entry field at the bottom of the complex form entry.

• ComplexEntryTypes references one or more LexEntryType items in the Complex Form

Types list. In the UI, this is set in the Complex Forms section in the Complex Form Type

field. The Abbreviation in this item is used when displaying the complex form, and the

ReverseAbbr is used when displaying a minor entry.

• ComponentLexemes references one or more main entries for this complex form. In the UI,

this occurs in the Components field in the Complex Forms section.

• PrimaryLexemes references one or more of the entries in ComponentLexemes. For each

PrimaryLexeme, a subentry will be generated for this complex form entry in Root-based

views. This property is changed in the UI at the bottom of the complex form entry by the

Show Subentry Under field.

FLEx Conceptual Model Page 49

6/11/2025

• ShowComplexFormsIn references one or more of the entries in ComponentLexemes. For

each ShowComplexFormsIn, a complex form will be generated for this complex form entry

in Lexeme-based views. This property is changed in the UI at the bottom of the complex

form entry by the Referenced Complex Forms field.

Complex forms typically refer to a LexEntry, but they can also refer to a LexSense if the

complex form only applies to one sense. Note that there is no direct connection in the model

from the main entry to complex form entries, although they can be accessed through virtual

properties.

4.2.2 Variants

This is the display of a main entry with a variant, and a minor entry.

Here is how the data is stored in FLEx for a variant.

The structure for a variant is similar to complex forms, but needs less information. A simple

variant entry does not have a sense. In interlinear text it shows the sense information from the

main entry. This means MorphoSyntaxAnalyses are not needed on the entry.

DialectLabels are available on LexEntry and LexSense and allow users to specify one or more

dialects that use this entry or sense. The possible dialects are specified in the Dialect Labels list.

Since this is a dialect variant, it’s appropriate to include the dialect on the variant entry.

FLEx Conceptual Model Page 50

6/11/2025

The part that makes the bottom entry a variant entry, is adding a LexEntryRef in the EntryRefs

owning property. In the LexEntryRef

• RefType is set to 0 to indicate this is a variant.

• Hide Minor Entry is set to 0 so that the minor entry will show. In the UI, this is controlled by

the Show Minor Entry field at the bottom of the variant entry.

• VariantEntryTypes references one or more LexEntryType items in the Variant Types list. In

the UI, this is set in the Variants section in the Variant Type field. The Abbreviation in this

item is used when displaying the variant form, and the ReverseAbbr is used when displaying

a minor entry.

• ComponentLexemes references one or more main entries for this variant. In the UI, this

occurs in the “Variant of “field in the Variant section.

• PrimaryLexemes and ShowComplexFormsIn fields are not used for variants.

Variants typically refer to a LexEntry, but they can also refer to a LexSense if the variant only

applies to one sense. Note that there is no direct connection in the model from the main entry to

variant entries, although they can be accessed through virtual properties. Although a variant is

typically present without a sense, these entries can have senses and most other information of full

entries, if needed.

4.3 Senses

Sense information is stored in LexSense objects which are owned in the Senses property of

LexEntry. Senses can also be nested. So LexSense can also be owned in the Senses property of

LexSense. Sense numbers are provided virtually by FLEx, so there is no need to store numbers

with senses. Dictionary configuration allows you to alter the numbering system in various ways.

Configuration also allows you to start each sense in a new paragraph, if desired, and allows

indents, and other paragraph properties when they are separate paragraphs.

The LexSense class includes the following types of strings:

Name Signature

Definition MultiString

Gloss MultiUnicode

ScientificName String

AnthroNote MultiString

Bibliography MultiString

DiscourseNote MultiString

EncyclopedicInfo MultiString

GeneralNote MultiString

GrammarNote MultiString

PhonologyNote MultiString

Restrictions MultiString

SemanticsNote MultiString

SocioLinguisticsNote MultiString

Source String

ImportResidue String

Exemplar MultiString

UsageNote MultiString

FLEx Conceptual Model Page 51

6/11/2025

Styles for each field and Before, Between, and After text is controlled via configuration. Each

sense has a MorphoSyntaxAnalysis that references one of the MorphoSyntaxAnalyses owned by

its LexEntry. Senses can also be configured to show the grammatical category before a group of

senses that have the same category.

Here’s an example that shows main and subsenses of senses using the configuration option, “If

all senses share the grammatical information, show it first”.

All 4 senses share the same part of speech. The two senses in the middle are main senses

and the two on the right are subsenses of the first sense.

4.3.1 Example sentences

Example sentences and translations can have multiple writing systems with embedding as

needed. You can also have multiple translations with different types. Default types are Free

translation, Literal translation, and Back translation, but you are free to add other types if needed.

Here’s a simple example.

This is how it is represented in FLEx:

Multiple examples are owned in an Examples owning sequence property. The MultiString

Example and optional Reference String are stored in a LexExampleSentence object. One or more

FLEx Conceptual Model Page 52

6/11/2025

translations are owned in a Translations sequence property. Each translation is stored in a

CmTranslation object with the MultiString Translation and a Type that references a

CmPossibility in the Translation Types list.

4.3.2 Extended notes

There are times when note fields need to include one or more example sentences to illustrate the

discussion. In order to do this, FLEx offers Extended Notes. This works by including one or

more extended note objects. Each extended note has a type that refers to an item in the Extended

Note Types list, a MultiString Discussion field, and one or more examples. Consecutive

extended notes of the same type will be displayed together as one note with configured

Before/After text and style. When more than one type is used, the Extended Note node in

Dictionary Configuration needs to be duplicated to provide different formatting, if you want to

have different configuration for the additional types.

Here’s an example with two example sentences illustrating the first part of the note.

This is how it is represented in FLEx:

LexExtendedNote objects are owned in the ExtendedNote owning sequence property of

LexSense. Both of these notes reference the Discourse CmPossibility in the Extended Note

Types list through the ExtendedNoteType property, so they represent one discourse extended

note. The text before the examples is in the Discussion field of the first LexExtendedNote, and

the text after the examples is in the Discussion field in the second LexExtendedNote. The first

LexExtendedNote owns two LexExampleSentence objects through the Examples owning

sequence property. These examples use identical classes for normal examples on senses

described in section 4.3.1.

FLEx Conceptual Model Page 53

6/11/2025

4.3.3 Lexical relations

In FLEx, lexical relations (between senses) and cross references (between entries) are

implemented using LexRelation objects that represent an instance of a certain kind of relation

set, and references entries or senses for this particular relation. FLEx uses virtual properties on

entry and sense to find any LexRelation objects that are referencing the entry or sense, and

displays appropriate information showing the relevant lexical relations. The specifications for the

LexRelation are in LexRefType items in the Lexical Relations list.

There are 6 basic relation set types that are available

• Collection – links to a set of unordered objects (e.g., synonyms). Every object in the list will

show all of the other objects in the list.

• Pair – links two objects (e.g., antonyms). Each object will show the other object with the

same relation label.

• Pair (different names) - links two objects (e.g., classified nouns). Each object will show the

other object, but with different labels for each end.

• Sequence – links an ordered list of objects (e.g., days of week). Each object will show the

entire ordered set.

• Tree – links one object to a set of unordered objects (e.g., part/whole). The first object shows

all other objects with one label. The other objects show the root object with a different label.

• Unidirectional – links one object with a sequence of objects. The root object shows all other

objects. The other objects do not show anything.

The Lexical Relations list owns LexRefType objects, which are subitems of CmPossibility.

LexRefType has six significant properties.

• Name: The name (or forward name) for the relation of the first linked object.

• Abbreviation: The abbreviation (or abbreviation) for the relation of the first linked object.

• ReverseName: The name for the relation when showing non-first linked objects.

• ReverseAbbreviation: The abbreviation for the relation when showing non-first linked

objects.

• Members: Owns LexReference instances for lexical relation sets of this type.

• MappingType: An enum specifying the type of set types and whether they are between

senses, between entries, or between entries or senses. This table displays the possibilities.

The enum represents the integer when used in program code.

Int Type of relation enum

0 sense collection kmtSenseCollection

1 sense pair kmtSensePair

2 sense pair with two relation names kmtSenseAsymmetricPair

3 sense tree kmtSenseTree

4 sense sequence kmtSenseSequence

5 entry collection kmtEntryCollection

6 entry pair kmtEntryPair

7 entry pair with two relation names kmtEntryAsymmetricPair

8 entry tree kmtEntryTree

9 entry sequence kmtEntrySequence

10 entry or sense collection kmtEntryOrSenseCollection

11 entry or sense pair kmtEntryOrSensePair

FLEx Conceptual Model Page 54

6/11/2025

12 entry or sense pair with two relation names kmtEntryOrSenseAsymmetricPair

13 entry or sense tree kmtEntryOrSenseTree

14 entry or sense sequence kmtEntryOrSenseSequence

15 sense unidirectional kmtSenseUnidirectional

16 entry unidirectional kmtEntryUnidirectional

17 entry or sense unidirectional kmtEntryOrSenseUnidirectional

4.3.3.1 Collection

Here is an example of a synonym set:

This is how it is represented in FLEx.

LexRefType is a subclass of CmPossibility owned in the Lexical Relations CmPossibilityList

owned in the References owning property of LexDb, owned in the LexDb atomic owning

property of LangProject. The Abbreviation for this object is ‘syn’ and the name is ‘Synonyms’.

The MappingType 0 means the targets are a collection of senses.

In this diagram, we are not showing the entries and related classes for each sense to keep the

diagram simpler. LexReference Targets is a sequence reference, so it has a fixed order dependent

on when items were entered into the set. In this example, the order happens to be appartement,

maison, domicile, but the order is ignored in displaying synonyms. Instead, FLEx displays the

synonyms sorted on the headwords. For this synonym relationship, the display for appartement

will list the other two senses in the set: maison and domicile. As soon as the user adds the three

items to the set from some entry, all of the references show automatically on all of the senses.

4.3.3.2 Pair with different names

Here is an example of a Male Female set for classifying animal names. This uses a pair with

different names. Showing glosses following the related words is an option in Dictionary

Configuration. In this case, and the following examples, that is unchecked.

FLEx Conceptual Model Page 55

6/11/2025

This is how it is represented in FLEx.

In this case, MappingType is 2 to indicate we only have two targets in each LexReference, and

they use different names from both sides. For this type the LexRefType uses a

ReverseAbbreviation to indicate the reverse side. We started from ‘chèvre’ and chose “Insert

Male Relation (to this Female)” in the UI to connect to ‘bouc’, so the female is first in the targets

and the male is second. From the female sense we use the Abbreviation ‘m’ to mark the male.

From the male sense we use the ReverseAbbreviation ‘f’ to mark the female.

The Pair MappingType 1 would be similar to this but there would be no ReverseAbbreviation,

and the Abbreviation would be used from both sides of the relation. Antonyms would typically

use this type.

4.3.3.3 Sequence

Here is an example of a Calendar sequence set for classifying days of the week, months, etc. The

order in this set is critical, and FLEx allows the user to move items left or right in the sequence if

needed. The full sequence is shown on all senses.

This is how it is represented in FLEx.

In this case, MappingType is 4 to indicate we have an ordered sequence in each LexReference,

and all targets are shown from each sense.

4.3.3.4 Tree

Here is an example of a part-whole Tree relation that can provide a semantic hierarchy of senses.

FLEx Conceptual Model Page 56

6/11/2025

This is how it is represented in FLEx.

In this case, MappingType is set to 3 to indicate this is a Tree relation. The first item in Targets

must be the root of the tree. The order of remaining items is not relevant as they are all leaves of

the tree and will be sorted when they are displayed. The Abbreviation is used when displaying in

the root item, and ReverseAbbreviation is used when displaying in the remaining items.

Additional tree relations could be used for fenêtre, porte, or toit to further break these parts into

subparts, thus providing a tree structure with branches.

4.3.3.5 Unidirectional

There are times when it is desirable to reference senses from one sense without anything

showing from the target senses back to the first sense. All of the relations discussed so far always

show relations from both ends of the links. The Unidirectional options provide for this need.

Unidirectional Targets will be displayed in the order they occur without any sorting. The first

Target is the sense that will display the relation. The remaining targets are all listed in order

following the relation abbreviation or name. They are not sorted based on the headwords.

When one of the Entry types are used, everything works the same except the links are to entries

instead of senses, and the relations would show up under Cross References instead of Lexical

Relations in Lexicon Edit and Dictionary views. An ‘Entry Or Sense’ type would allow either

Entries or Senses in the set.

Caution: Items in the Lexical Relations list are not simply objects that are referenced by other

objects. Each item in this list also owns a collection of all of the lexical relation sets that are

specified for this type of relation. So deleting an item in this list removes every instance of that

type of relation. When a user tries to delete these, FLEx gives a warning message indicating how

many relations will be deleted if they proceed.

FLEx Conceptual Model Page 57

6/11/2025

4.3.4 Reversals

In FLEx, for each analysis language, there is a ReversalIndex object that is owned in the

ReversalIndexes owning collection of LexDb. Each ReversalIndex has

• Entries owning collection of ReversalIndexEntry objects.

• PartsOfSpeech atomic owning property holding a CmPossibilityList. This list owns

PartOfSpeech objects so that language-specific parts of speech categories can be used in the

reversal display.

• Unicode WritingSystem property that contains the writing system code for this reversal

index.

ReversalIndexEntry objects have

• MultiUnicode ReversalForm property that has the headword for the reversal entry in the

language of the reversal list.

• PartOfSpeech atomic reference property to one of the items in the ReversalIndex parts of

speech list.

• Senses reference sequence property that references LexSense objects.

• Subentries owning sequence property that owns ReversalIndexEntry objects allowing for

hierarchical reversals.

LexSense uses a virtual property to find ReversalIndexEntry objects and displays this in the

Lexicon Edit window. When typing something into a reversal field, FLEx finds or creates a

ReversalIndexEntry in the appropriate language ReversalIndex and adds a link to the current

sense to this item. A colon indicates a subentry.

Here is a simple English reversal index into the French dictionary:

This is how it is represented in FLEx.

FLEx Conceptual Model Page 58

6/11/2025

This is the English ReveralIndex that has an English Parts of Speech list with a noun category

that is referenced by all 5 ReversalIndexEntry objects via the PartOfSpeech property. Three

ReversalIndexEntry objects are owned through the Entries owning collection in the

ReversalIndex. Two ReveralIndexEntry objects are owned in the Subentries owning sequence

property of the first ReversalIndexEntry. The Senses reference sequence properties in the

ReveralIndexEntry objects reference one or more senses to show with this reversal entry.

Use of Part of Speech categories in reversal entries is optional. Another option would be to

include the sense part of speech using Reversal Configuration. Another option is to include a

category marker at the end of the ReversalIndexEntry ReversalForm where necessary.

In the Lexicon Edit area, this is how it appears in the ‘lundi’ Reversal Entries field. There are

two references to Monday. The second one is a subentry since it follows a colon in the ‘days of

week’ reversal.

Reversal indexes are sorted and filtered using the Bulk Edit Reversal Entries tool in Lexicon

Edit. The collation comes from the writing system of the reversal index. Sorting in this area only

affects the main reversal entries. To sort the reversal subentries you have to use Tools > Utilities

> “Sort Reversal Subentries”. If this subentry sort puts some subentries in an undesired order,

you can correct that order in Reversal Indexes using the “Move Subentry Up/Down” right-click

menu.

FLEx Conceptual Model Page 59

6/11/2025

4.3.5 Pictures

FLEx allows multiple pictures on each sense. When inserting a picture, you should normally

choose the option to copy the file to the project LinkedFiles\Pictures folder. It will then be

backed up with FLEx backups and also included in Send/Receive. Here’s an example of a picture

with a caption and copyright information.

This is how it is represented in FLEx.

LangProject has an owning collection Pictures property that holds CmFolder objects. Pictures are

normally stored in a CmFolder in this property with a name “Local Pictures”. CmFolder has an

owning collection Files property that owns CmFile objects. CmFile has a Unicode InternalPath

property to record the location of a picture file. This path is normally a relative path starting at

the project LinkedFiles directory, so it would include the Pictures folder as part of the path. Files

can be located outside the project folder, and in that case it would be a full path to the file on the

hard drive. CmFile has other properties that are not used in FLEx.

LeSense has an owning sequence Pictures property that holds CmPicture objects. CmPicture has

a MultiString Caption property, and an atomic reference PictureFile property that references a

CmFile holding the file name. CmPicture has various other properties that haven’t been

implemented in FLEx.

FLEx has a dialog for copyright information for pictures. This information is not stored in the

model, but is stored in the picture file.

4.3.6 Sound files

See section 4.1.2 on Pronunciations for information on sound files in FLEx.

4.4 Virtual ordering

The default ordering of subentries within an entry is an alphabetical sort. There are times where

this is undesirable. It’s possible to override this order in given entries using the right-click “Move

Left/Right” options in the “Subentries” and “Referenced Complex Forms” fields at the bottom of

FLEx Conceptual Model Page 60

6/11/2025

the entry. When this is done, FLEx inserts an unowned VirtualOrdering object. Choosing

Alphabetical Sort in these menus will remove the VirtualOrdering object and go back to default

sorting.

VirtualOrdering has

• Source - atomic reference to CmObject to which it applies.

• Field - Unicode name of the field it overrides on this object. It can be real or virtual.

• Items - sequence reference to CmObject. This is the order that is desired for this property on

this object.

The sample project has the order switched in the ‘lion’ entry in Lexeme-based view by changing

the “Referenced Complex Forms” field at the bottom of the entry.

This is how it is represented in FLEx.

The source is the ‘lion’ entry. The Field is a virtual VisibleComplexFormBackRefs property on

LexEntry that returns the LexEntryRef items for the ‘lionne’ and ‘lionceaux’ entries.

When VirtualOrdering is used on the Subentries property, the Field is virtual Subentries, and the

Items point to the ‘lionne’ and ‘lionceaux’ LexEntry objects.

The code for VirtualOrdering is pretty generic for VectorReferenceView. It may or may not

work to add this class on other attributes.

4.5 Publications

FLEx allows multiple publications where each publication can pick which parts of the data to

include in that publication. This filter, along with custom Dictionary Configuration views for

selecting what fields to include and how to format them provides a flexible way of using the

same data in FLEx to be printed in various publications.

FLEx has a Publications list for adding different publications. FLEx comes with a standard

“Main Dictionary” item in this list. By default, everything you enter in FLEx will be included in

this publication.

To exclude an object from a given publication, there are DoNotPublishIn properties on these

classes:

Class Lexicon Edit Field name

LexEntry Publish Entry In

LexSense Publish Sense In

LexExampleSentence Publish Example In

LexPronunciation Publish Pronunciation In

FLEx Conceptual Model Page 61

6/11/2025

CmPicture Publish Picture In

DoNotPublishIn is a reference collection to CmPossibility in the Publications list. In Lexicon

Edit there are fields on each of these classes with the opposite polarity. In the UI, FLEx shows

which publications will include the current object, and you have the option to remove

publications from each of these fields. When you remove a publication from an object, FLEx

adds a reference to the removed publications to the DoNotPublishIn field.

In the example project, the ‘lionceaux’ entry has ‘Limited’ removed from the Publish Entry In

field. In the Dictionary view, if you choose the Limited publication from the left chooser in the

title bar, you will see that ‘lionceaux’ no longer shows in the dictionary view. But if you choose

the Main Dictionary publication, then ‘lionceaux’ is included.

This is how it is represented in FLEx.

The Publications CmPossibilityList has a “Limited” CmPossibility item. The LexEntry for

‘lionceaux’ has a reference from DoNotPublishIn to the ‘Limited’ item, thus it will not be printed

in this publication.

5 Grammar model

Most objects in the grammar area come from factory lists that are provided with FLEx. The user

normally chooses from these lists to provide the features they want. The core part of the

grammar is the Parts Of Speech list seen in the Category Edit tool in the Grammar area. In

addition to providing names and abbreviations for categories, there are other details that can be

added to a category including Affix Templates, Affix Slots, Inflection Class Info, Features, and

Stem Names. Using these features along with lexical entries, a user can use morphological

parsers to validate morphology as specified by the grammar. These specifications affect the

XAmple, HermitCrab, and interlinear parsers.

In addition to Category Edit, in the Grammar area, there are various tools to list phonemes and

phonological features and rules, natural classes, environments, inflection features, etc. There is

also a Grammar Sketch tool that will provide a sketch of your grammar at any point in time. The

Feature Types list in the Lists area is also related to Grammar and is not a true CmPossibility list.

To illustrate some of the grammar capabilities, the sample project illustrates some basics for

parsing French verbs that follow the ER paradigm. Only the first and third person suffixes are

currently defined. This can parse the verb ‘manger’ into ‘mange’ for first person singular (I eat),

and ‘mangeons’ for third person singular (we eat). Once this is set up, it could parse other verbs

that use the same affixes to determine person and number, as long as the other main entries are

linked to the ‘ER Verbs’ Inflection Class in their Grammatical Info Details section.

FLEx Conceptual Model Page 62

6/11/2025

5.1 Inflection features

In order to do this, in the Inflection Features tool, add a new Complex Feature with check marks

in person and number sections under subject agreement.

FLEx Conceptual Model Page 63

6/11/2025

This shows what happens in FLEx.

The feature system is stored in a FsFeatureSystem object owned in the MsFeatureSystem atomic

owning property of LangProject. FsFeatureSystem has a Features owning collection of

FsFeatDefn objects, and a Types owning collection of FsFeatStrucType objects. FsFeatDefn is

an abstract class with the possibilities: FsClosedFeature, FsComplexFeature, and FsOpenFeature.

In this example we have

• A FsComplexFeature for subject agreement and it references the FsFeatStrucType for

Subject agreement in the Type property. The Features on this type reference two

FsClosedFeature objects.

• A FsClosedFeature for person owns two FsSymFeatVal objects in the Values property, one

for first person, and the other for third person.

• A FsClosedFeature for number owns two FsSymFeatVal objects in the Values property, one

for singular number, and the other for plural number.

5.2 Categories

In Category Edit, add an Affix Template, an Affix Slot, and an Inflection Class Info to the Verb

category.

FLEx Conceptual Model Page 64

6/11/2025

At this point, the affix template will not have any entries in the vPersNum column

This is how it is implanted in FLEx.

In the Verb PartOfSpeech, we have a ‘vPersNum’ MoInflAffixSlot owned in the AffixSlots. This

gives the ‘vPersNum’ column in the ‘Verb Person and Number’ affix template. The

FLEx Conceptual Model Page 65

6/11/2025

InflectableFeats property references a FsComplexFeature for subject agreement. The Affix

Templates property owns a MoInflAffixTemplate for ‘Verb Person and Number’ and the

SuffixSlots in that object is set to the ‘vPersNum’ MoInflAffixSlot object. InflectionClasses

owns an ‘ER Verbs’ MoInflClass object.

5.3 Lexicon

In the entry for ‘manger’, we specify the lexeme form as ‘mang’ and the citation form as

‘manger’. In the Grammatical Info Details section the entry is classified as a verb, and the

Inflection Class is set to ER Verbs.

 In the ‘-e’ suffix entry, we add the entry to the ‘vPersNum’ slot, and set the Inflection features to

‘singular number’ and ‘first person’.

The ‘-eons’ entry, we make similar changes except person is set to ‘third person’, and number is

set to ‘plural number’.

This is represented in FLEx data as

FLEx Conceptual Model Page 66

6/11/2025

In the lexicon, the ‘manger’ entry owns a MoStemMsa object that references the ‘Verb’

PartOfSpeech object in the PartOfSpeech reference property. It also references the ‘ER Verbs’

MoInflClass, indicating that this entry is one that follows the standard ER paradigm.

The MoInflAffixMsa object owned by the ‘-e’ LexEntry references the ‘Verb’ PartOfSpeech

object via the PartOfSpeech reference property. The Slots reference property references the

FLEx Conceptual Model Page 67

6/11/2025

‘vPersNum’ MoInflAffixSlot object so that it will show up in the ‘Verb Person and Number’

affix template. The InflFeats property owns a FsFeatStruc object.

The 7114 FsFeatStruc objects owns a FsComplexValue object in the FeatureSpecs property.

The FsComplexValue object has a Feature reference property that references the ‘subject

agreement’ FsComplexFeature object. This references the person FsClosedFeature and the

number FsClosedFeature objects that are relevant to the FsComplexValue object in the ‘-e’ entry.

The FsComplexValue object also has a Value property that owns a FsFeatStruc object.

The 8b7c FsFeatStruc has a Type property that also references the ‘Subject agreement’

FsFeatStrucType object. The FsFeatStruc also has a FeatureSpecs property that owns two

FsClosedValue objects.

The 5641 FsClosedValue object references the ‘number’ FsClosedFeature object in the Feature

property and the ‘singular number’ FsSymFeatVal obejct in the Value property.

The edb7 FsClosedValue object references the ‘person’ FsClosedFeature object in the Feature

property and the ‘first person’ FsSymFeatVal obejct in the Value property.

There wasn’t room to show the ‘-eons’ entry in this diagram, but it would be very similar to the

‘-e’ entry diagram, except the final FsClosedValue objects would have a value set to the ‘plural

number’ FsSymFeatVal object, and the ‘third person’ FsSymFeatVal objects.

6 Interlinear model

FLEx maintains a wordform inventory based on unique words in baselines of interlinear texts in

the Texts & Words area. The wordform inventory can be viewed in the Word Analyses tool in

the Texts & Words area. Initially capitalized and uncapitalized words are both included because

it is unknown whether they should be different or not. The wordforms shown in Word Analyses

are limited to ones in the texts filter. To change the filter, go to View > Choose Texts, or use the

Choose Texts icon in the toolbar. This will show all of the texts in the project. Ones with

checkmarks are in the current filter that affects what you see in Word Analyses and Interlinear

Texts.

6.1 Structured Text

Suppose we create a new Text 1 interlinear text without typing anything in the baseline. This is

what we have in FLEx.

FLEx Conceptual Model Page 68

6/11/2025

An interlinear text is implemented by a Text object that has

• Name - MultiUnicode inherited from CmMajorObject shown as the Title in the UI.

• Abbreviation – MultiUnicode inherited from CmMajorObject

• Contents – atomic owning holding a StText

• IsTranslated - Boolean to indicate if it’s translated text, such as scripture, or original text.

• DateCreated and DateModified inherited from CmMajorObject

• Source - MultiString

• Genres – reference collection to CmPossibility in the Genres list. This allows texts to be

hierarchically arranged in the Choose Texts dialog making it easier to filter on certain types

of text.

Text objects do not have owners. Most of these Text properties can only be seen or modified in

the Info tab in the Interlinear Texts tool.

StText (Structured Text) is a class in FLEx that can hold any number of paragraphs (StTxtPara)

that can have styles associated with paragraphs and text in paragraphs. An StText can be used

kind of like a Google document. Whenever you press the Enter key, it starts a new StTxtPara at

that point. StText has

• Paragraphs – an owning sequence of StPara which is abstract, and is implemented as

StTxtPara or ScrTextPara (for Scripture).

• DateModified – Time when modified

• RightToLeft – Boolean. True if the text is right-to-left, or False if left-to-right.

• Tags – owning collection of TextTag (used in text tagging).

StTxtPara stores the text for the baseline of the paragraph, plus additional information for

interlinearization. StTxtPara has

• Contents – String holding the baseline text.

• Segments – an owning sequence of Segment for interlinearization.

• ParseIsCurrent – Boolean. True if the Segments have not changed since they were last

parsed, or False if they need to be reparsed.

• StyleRules – Used where paragraph and text styles are allowed.

There are some other properties that are not relevant at this point.

In the empty Text diagrammed above, the only real information is the title of the text in the

Name property of Text. The StTxtPara does not have any text in the baseline at this point.

6.2 Segment

If we now type a text in the baseline and go to the Analyze tab, it will look like this, assuming

none of the words are in the lexicon and you haven’t done any previous analyses.

FLEx Conceptual Model Page 69

6/11/2025

Word Analyses will show this:

At this point, the implementation in FLEx starting at StTxtPara is this.

Segment is a class that holds all the information that is relevant to the analysis of a sequence of

words ending in period, question mark, exclamation point, or section sign (U+00A7). Segment

has

• Analyses – reference sequence to IAnalysis, which is an interface that includes

WfiWordform, WfiAnalysis, WfiGloss, and PunctuationForm.

• BeginOffset – An integer giving the offset from the beginning of the Contents string in

StTxtPara to the beginning of this segment. This allows FLEx to find the section of baseline

text in the StTxtPara Contents string that is covered by this Segment.

• FreeTranslation – MultiString giving the free translation of the text in this segment.

• LiteralTranslation – MultiString giving the literal translation of the text in this segment.

• Notes – owning sequence of Note, allowing notes to be added to this segment.

FLEx Conceptual Model Page 70

6/11/2025

• Other properties used to store information from ELAN, but not currently covered by FLEx

UI include BeginTimeOffset, EndTimeOffset, MediaURI, Reference, and Speaker.

• Custom fields are also possible on Segment.

The baseline is stored in the Contents String of StTxtPara. FLEx breaks the baseline from the

paragraph into segments ending in period, question mark, exclamation point, or section sign

(U+00A7). Since there is only one period in this example, we only need one Segment in the

Segments owning sequence property. In this case, the segment starts at the beginning of the

string, so BeginOffset is set to 0.

As editing takes place, FLEx attempts to keep the Analyses accurately matching the baseline.

During Send/Receive, it’s not always possible to keep everything current. When this happens,

FLEx sets ParseIsCurrent on StTxtPara to False. The next time that Text is opened, FLEx will

reparse the baseline text and resets the Analyses to reflect the current state of the data. A user can

also force this operation at any time by using Tools > Utilities > Force Rechecking Word Breaks.

This sets all of the StTextPara ParseIsCurrent flags to false. When you go to the Word Analyses

tool, or the Concordance tool, FLEx will automatically reparse all Texts and reset the flags to

True.

This is a free translation and a Note at the bottom of a Segment.

This is how it is implemented in FLEx (omitting other Segment fields)

6.3 Wordforms

FLEx breaks the baseline text for this segment into wordforms based on space and punctuation,

then finds an existing WfiWordform that matches the wordform, or creates a new WfiWordform

with the text from the wordform which is stored in the MultiUnicode Form field of

WfiWordform. WfiWordform objects do not have owners. The Analyses reference sequence

property on Segment stores a reference to each WfiWordform or PunctuationForm. When

Analyses reference WfiWordform, it means there is no analysis for this word at this point. In the

display, this is shown by 3 asterisks in each field. Punctuation is stored in PunctuationForm

objects and referenced from Analyses. The Form field for PuncutationForm is a String property.

When creating a new interlinear text, if you have more than one vernacular writing system, FLEx

will ask which writing system you will be using for this text. This is not stored in any property.

The writing system of the first character of the baseline is the only way to determine this. Any

runs that are not in this writing system in the baseline are stored in PunctuationForm objects

rather than WfiWordform objects. Any text in PunctuationForm objects cannot be analyzed.

PunctuationForm objects are never deleted. Because they will be created if a person uses any

writing system other than the vernacular writing system for the baseline, they should avoid this

as much as possible. If the project gets cluttered with many unneeded PuncuationForm objects,

FLEx Conceptual Model Page 71

6/11/2025

they can all be deleted. In Notepad++, you can delete all PunctuationForm objects from fwdata

by using this regular expression search and replace.

Search <rt class="PunctuationForm".*\r\n<Form>\r\n<Str>\r\n<Run.*\r\n</Str>\r\n</Form>\r\n</rt>\r\n
Replace (leave empty)

After doing this, you need to run Tools > Utilities > Find and fix… from another project to

process your repaired project to remove any references to the deleted punctuation forms. Then

open the project and use Tools > Utilities > Force Rechecking Word Breaks. Then go to

Concordance or Word Analyses which will reparse everything and add new PunctuationForm

objects where needed.

Wordforms should be unique. If duplicates somehow occur, you can run Tools > Utilities >

Merge Duplicate Wordforms to merge them together. This will copy the analyses from the

duplicate ones into a single wordform. After running this, you should run Tools > Utilities >

Merge Duplicate Analyses. This will merge any duplicate analyses in the wordforms.

FLEx can interlinearize texts in different vernacular writing systems. There are various issues

involved in doing this. See section 13, Interlinearizing with multiple scripts in

https://downloads.languagetechnology.org/fieldworks/Documentation/Flex_tips.pdf before

attempting to do this.

6.4 Analyses

Suppose the lexicon already has a definition for ‘lion’ and ‘garçon’? The interlinear display will

now show this in the Analyze tab

and Word Analyses will now show this for ‘garçon’

https://downloads.languagetechnology.org/fieldworks/Documentation/Flex_tips.pdf

FLEx Conceptual Model Page 72

6/11/2025

The user hasn’t done anything to the text, but FLEx found two words in the lexicon that matched

a wordform, so it automatically created an analysis candidate that is shown in blue in the

interlinear Analyze tab.

This is what FLEx now has for the ‘garçon’ wordform.

FLEx Conceptual Model Page 73

6/11/2025

LangProject owns the following CmAgent objects in the AnalyzingAgents owning collection.

Name of CmAgent Human Description

M3Parser False approved or disapproved by the XAmple parser

HCParser False approved or disapproved by the Hermit Crab parser

Computer False approved or disapproved by the interlinear parser

Default user True approved or disapproved by the user

Each CmAgent has an Approves, and a Disapproves property owning a CmAgentEvaluation.

Analyses can be approved or disapproved by any of these CmAgents by referencing the desired

CmAgentEvaluation through the Evaluations reference collection property on WfiAnalysis. The

current suggestions are generated and approved by the Computer parser. At this point it’s up to

the user whether they want to approved the analyses or not.

The ‘garçon’ WfiWordform now owns a WfiAnalysis object. A WfiAnalysis objects has

• Category – atomic reference to a PartOfSpeech in the Category list in the Grammar area.

This shows up in the Word Category line of the Analyze tab of an interlinear text.

FLEx Conceptual Model Page 74

6/11/2025

• Meanings – owning collection holding WfiGloss objects. One of these WfiGloss objects will

show up in the Word Gloss line of the Analyze tab of an interlinear text.

• MorphBundles – owning sequence of WfiMorphBundle. There is one WfiMorphBundle for

each morpheme in the wordform analysis.

• Evaluations – reference sequence to CmAgentEvaluation approving or disapproving the

analysis for one or more CmAgents.

In this case the WfiAnalysis references a Noun PartOfSpeech through the Category property. It

owns one WfiGloss with form ‘boy’ in the Meanings property. It references a

CmAgentEvaluation for being approved by the computer. It has one WfiMorphBundle in

MorphBundles. WfiMorphBundle has

• Form – MultiString form for the morpheme. This form will be displayed in the Morphemes

line in the Analyze tab of an interlinear text if the Morph property is empty. Once the Morph

property is set, the Morphemes line displays the Form from the referenced MoForm,

• Morph – atomic reference to a MoForm, either in the LexemeForm or AlternateForms

property of a LexEntry. This Form is displayed in the Lex Entries line in the Analyze tab of

an interlinear text.

• Msa – atomic reference to a MoMorphSynAnalysis in the Morph entry. This PartOfSpeech in

this analysis is displayed in the Lex Gram Info line in the Analyze tab of an interlinear text.

• Sense – atomic reference to a LexSense in the Morph entry that shares the Msa referenced by

this WfiMorphBundle. The Gloss from this sense is displayed in the Lex Gloss line in the

Analyze tab of an interlinear text.

In the sample WfiMorphBundle, the Form contains ‘garçon’, but it is unused because the Morph

property is referencing the MoStemAllomorph of the ‘garçon’ LexEntry. The Msa references the

MoStemMsa from the ‘garçon’ LexEntry and displays ‘n’ part of speech referenced by the

MoStemMsa. The Sense references the only sense in the ‘garçon’ LexEntry and displays ‘boy’

from the Gloss. The Word Gloss displays ‘boy’ from the WfiGloss Form. The Word Cat displays

‘n’ from the WfiAnalysis Category.

6.5 Approving analyses

If the user clicks the green Approve button in ‘garçon’ in the word focus box, the Analyze tab

shows

and the Word Analyses tool shows

FLEx Conceptual Model Page 75

6/11/2025

Note that now ‘garçon’ shows 1 User Analysis, and the analysis now appears under the User

Approved (Analyses) section.

Two changes occurred in the FLEx data.

• In the Segment Analyses list of references for wordforms, the second one that used to

reference the ‘garçon’ WfiWordform now references the ‘boy’ WfiGloss object owned in the

WfiAnalysis owned by the ‘garçon’ WfiWordform.

<rt class="Segment" guid="78220579-5e21-47df-82b1-1fd72a02748d" ownerguid="a51ed87e-d6fe-
44d6-a317-1b726d218fe3">
<Analyses>
<objsur guid="b0460a42-7e19-460e-9ec8-4779c4a5f3ff" t="r" /> Le
<objsur guid="7dec7244-62f4-441f-bfc9-c9564093c2f0" t="r" /> <- garçon WfiGloss 'boy'

• In addition to the WfiAnalysis Evaluations referencing the Computer Approves

CmAgentEvaluation, it now also references the “default user” Approves

CmAgentEvaluation.

<rt class="WfiAnalysis" guid="be5aec0f-ff8d-4718-a97d-018a1fcd23d6" ownerguid="40b5890e-abc9-
4741-9ef7-8dea5fb88c37">
<Evaluations>
<objsur guid="41581e3a-7ed3-41ac-94c7-6e91dbcc108b" t="r" /> <- Computer approves
<objsur guid="8caa11bb-cac4-4836-a081-1666245106b9" t="r" /> <- Default user approves
</Evaluations>

In summary, the Analyses property of Segment can reference 4 types of objects.

• A WfiWordform with a Form that matches the wordform in the baseline. This indicates the

wordform is unanalyzed.

• A WfiAnalysis owned by a WfiWordform with a Form that matches the wordform in the

baseline. This indicates the wordform is partially analyzed. The analysis is known, but the

word gloss has not been chosen.

• A WfiGloss owned in a WfiAnalysis owned by a WfiWordform with a Form that matches

the wordform in the baseline. This indicates the wordform is fully analyzed to an exact

WfiGloss.

• A PunctuationForm contains punctuation in the baseline and any strings that are not in the

vernacular writing system of the text. They cannot be analyzed.

FLEx Conceptual Model Page 76

6/11/2025

Here’s an example of a word with two morphemes:

The FLEx diagram would be very similar to the previous diagram for ‘garçon’, but the

WfiAnalysis MorphBundles property now has two WfiMorphBundle objects; one for ‘lion’ and

one for ‘-s’. The first MorphBundle would reference the 3 parts of the ‘lion’ entry, and the

second MorphBundle would reference the 3 parts of the ‘-s’ entry.

6.6 Text Tagging

Interlinear text offers a Tagging tab that allows a user to tag sections of the baseline for

Grammatical Relations – Functional, Semantics – RRG, Syntax – Descriptive, or Syntax – RRG.

You can also create your own tagging structure. The tags are defined in the Text Markup Tags

list in the Lists area. The top-level tags define rows in the tagging system, and subitems provide

the tag markings within that line.

In the Interlinear Text Tagging tab you can highlight a string of wordforms and right-click to

choose a tag to assign to these wordforms. You can choose from more than one level. The result

might look like this

This is represented as follows in FLEx

FLEx Conceptual Model Page 77

6/11/2025

The Text Markup Tags list is owned in the TextMarkupTags property of LangProject. When you

add a tag, FLEx adds a TextTag object in the Tags owning collection of StText.

TextTag has

• BeginAnalysisIndex – Integer indicating the beginning index of IAnalysis references in the

Segment Analyses property.

• EndAnalysisIndex – Integer indicating the ending index of IAnalysis references in the

Segment Analyses property

• BeginSegment – atomic reference to the Segment where the tag begins

• EndSegment – atomic reference to the Segment where the tag ends

• Tag – atomic reference to CmPossibility in the Text Markup Tags list.

The 3 TextTag objects in this example all reference the same Segment. The Segment here is

showing the wordforms following the index into the Analyses list. The top and bottom TextTag

objects reference two subitems of the same top-level tag, so these two will be displayed on one

line. The top one puts NP around the first two words. The bottom one puts VP around the last 3

words. The middle TextTag is shown on a separate line and puts SENT around all 5 words.

6.7 Discourse Charting

Interlinear text offers a Text Chart tab that allows a user to add analyses into a discourse chart.

The chart structure and markers are in possibility lists that the user can modify to meet their

need. Here’s a simple example.

FLEx Conceptual Model Page 78

6/11/2025

This is represented as follows in FLEx

Text charts are stored in DsDiscourseData, which is owned in the DiscourseData atomic owning

property of LangProject. DsDiscourseData owns two CmPossibilityList objects.

• The “Text Constituent Chart Templates” list is owned in the ConstChartTempl atomic

owning property and defines the chart structure. This list is hierarchical. The top level is the

name of a type of chart. The only one by default is “Default Template”. The second level

defines the primary level of columns and headers (Pre-nuclear, Nucleus, and Post-nuclear)

separated by black lines. The third level defines secondary columns and headers. (e.g.,

Nucleus has Subject, Verb, and Object/Complement items) separated by gray lines.

• The “Text Chart Markers” list is owned in the ChartMarkers atomic owning property and

defines submenus for the right-click menu within cells to mark special features. This list is

FLEx Conceptual Model Page 79

6/11/2025

also hierarchical. The top level defines a right-click subitem. The defaults are

TenseAspectMood, Pronouns, and Demonstratives. Lower levels provide actual markers.

DsDiscourseData also has a Charts owning collection that owns DsChart objects. DsChart is a

subclass of CmMajorObject, and both of these are abstract. The only actual subclass that is

available is DsConstChart.

DsConstChart has

• Template – atomic reference to CmPossibility. This is one of the top possibilities in the “Text

Constituent Chart Templates” list. In this example, it is the “Default Template” item. This is

the item that defines the columns for this chart.

• BasedOn – atomic reference to StText. This is owned by the Text being charted.

• Rows – owning sequence of ConstChartRow objects. There is one ConstChartRow object for

each row in the chart. A row corresponds to a StTextPara and is shown in black lines and

numbers on the left designating the paragraph number.

ConstChartRow has

• Label – String containing the paragraph number and possible letters when there are sub-rows

within the row.

• Cells – owning sequence of ConstituentChartCellPart which is abstract. Possibilities include

• ConstChartClauseMarker – controls dependent clauses.

• ConstChartMovedTextMarker – allows word groups to be moved to a different location.

• ConstChartTag – inserts a tag before or after a column

• ConstChartWordGroup – groups 1 or more Wordforms into a cell.

• Notes – String for compiler notes.

In our simple example, DsConstChart uses the “Default Template” for laying out columns, it’s

based on the Test 1 StText, and there is only one ConstChartRow. The label for the row is 1

because it’s the first paragraph, and Notes has “Needs work” that appears in a Notes column on

the right. In the diagram, the first two levels of CmPossibility in the templates list are included in

the owning line to simplify the diagram. The Segment is a simplification showing the wordforms

for the 5 analyses. There are 3 cells in this example, each one is a ConstChartWordGroup and is

owned in the Cells property of ConstChartRow. All 3 are in one Segment, so BeginSegment and

EndSegment all reference this Segment. The first cell references the ‘Subject’ secondary column

under ‘Nucleus’ and includes the first 2 analyses (0 Lu, and 1 garçon). The second cell

references the ‘Verb’ secondary column under ‘Nucleus’ and includes the 3rd analysis (2 voit).

The third cell references the ‘Object/Complement’ secondary column under ‘Nucleus’ and

includes the last 2 analyses (3 le, and 4 lion). The Word and Word Gloss fields are shown for

each analysis.

A “Fake chart parts” example text that makes no linguistic sense, but demonstrates the remaining

ConstituentChartCellPart classes looks like this in the sample project.

FLEx Conceptual Model Page 80

6/11/2025

This chart was created with baseline ‘garçon voit lion.’, and bringing ‘garçon’ into the Subject

column, ‘voit’ into the Verb column, and ‘lion’ into the Subject column. Right-click ‘garçon’

and choose Mark as Postposed from > Outer. Right-click ‘garçon’ again and choose Mark

TenseAspectMood > Timeless > Timeless. Right-click ‘voit’ and choose Make a Dependent

Clause out of > Next Clause.

This is represented as follows in FLEx

FLEx Conceptual Model Page 81

6/11/2025

This diagram omits various details that were included in the previous diagram to make it easier

to understand.

(pink) When you right-click a cell and choose “Mark as Preposed from” or “Mark as Postposed

from”, and choose a target column, a ConstChartMovedTextMarker object (e.g., 917e) is placed

in the target column. It has a Column property that references the target column CmPossibility,

and a WordGroup property that references the source word group from which you gave the

command. FLEx adds two wedges in red in the target cell, and it shows the source cell in red.

(yellow) When you right-click a cell and choose one of the last 3 menu items (Mark

TenseAspectMood, Mark Pronouns, or Mark Demonstratives) and pick a subitem, a

ConstChartTag object (e.g. f037) is inserted in the current cell. It has a Column property that

references the current column CmPossibility, and a Tag property that references the selected

CmPossibility from the Text Chart Markers list. FLEx adds the CmPossibility name in

parentheses in a different color (e.g., Timeless).

(blue) Clauses are in a sub-row by themselves. When you right-click a cell in one sub-row, you

can choose one of the ‘Make a <Type> Clause out of’ menu items, you can choose the next or

previous clause, a ConstChartClauseMarker object (e.g., 34ea) is inserted in the source cell. It

has a Column property referencing a source column CmPossibililty, and a DependentClauses

FLEx Conceptual Model Page 82

6/11/2025

property that references the ConstChartRow that contains the clause. FLEx puts square brackets

around the clause, and in the source cell it adds the target row label in square brackets.

6.8 Scripture

FieldWorks used to have a Translation Editor program for working on Scripture. Development

on TE was stopped when we chose to help develop and work with Paratext for Scripture editing.

The last version of FieldWorks with TE was FW8.3.12. Although FieldWorks no longer allows

editing scripture text, when a Paratext project is associated with a FLEx project, books from

Paratext can be imported into FLEx. The data shows up as interlinear texts. Interlinear analysis

can be done on imported scripture, but FLEx does not provide any capability for editing or

deleting the imported scripture. If you need to remove scripture from a project, you can use LCM

Browser to delete the ScrBook objects (see section 3.3).

This is how a section of Titus from the LS1910 French public domain Bible looks in Paratext.

This section shows up in FLEx as 4 Texts

FLEx Conceptual Model Page 83

6/11/2025

FLEx Conceptual Model Page 84

6/11/2025

This is how the data is represented in FLEx.

FLEx Conceptual Model Page 85

6/11/2025

LangProject has a TranslatedScriptures atomic owning attribute that owns a Scripture object.

Scripture has various properties that are no longer used, but it has an owning sequence of

ScrBooks representing books of Scripture, each book in a ScrBook object. Scripture uses the

FLEx Conceptual Model Page 86

6/11/2025

FLEx structured text classes starting with StText, but instead of StText owning StTxtPara

objects, Scripture uses ScrTxtPara objects. In the Interlinear Texts tool, FLEx shows StText

objects and ScrFootnote objects as interlinear texts. When showing StText, in the Interlinear

Texts it

• appends (Title) for the StText owned in the ScrBook Title property

• appends (Heading) for the StText owned in the ScrSection Heading property

• it doesn’t append anything for the StText owned in the ScrSection Content property

• it appends Footnote(c:v) for ScrFootnote with the chapter and verse number in parentheses.

The vernacular ScrBook Name (or Abbrev) is used for the book name, and for StTexts owned in

ScrSection, it appends the chapter/verse range for the section.

ScrBook has

• CanonicalNum – Integer giving the book number in Scripture starting at 1 for Genesis. The

number for Titus, which is used in this example is 56.

• Name – MultiUnicode name for the book, used in displaying the Title for FLEx interlinear

text.

• IdText – Unicode string showing identifying information for the book.

• ImportedCheckSum – A calculated checksum of the Paratext book file that is stored when

FLEx imports a book from Paratext. When the user goes to the Choose Texts tool and the

FLEx project is associated with Paratext, and a ScrBook for this book is already in the FLEx

project, then FLEx calculates a current checksum for the Paratext book file, and if it is

different, it means the file has been edited in Paratext, so it reimports the book from Paratext

and stores the new checksum. When reimporting, FLEx attempts to maintain any

interlinearization a user did in FLEx.

• Title – atomic owning property holding a StText with the title for the printed book.

• Footnotes – an owning sequence of ScrFootnote holding all of the footnotes for the book.

• Sections – an owning sequence of ScrSection, which usually includes a section heading and

all of the verses until a new chapter or section head occurs.

ScrTxtPara objects use a StyleRules property to store paragraph style information in a

namedStyle prop element giving the name of the style for the paragraph. The Contents String

property includes namedStyle attributes with the name of special styles designating a “Chapter

Number”, “Verse Number”, “Title Secondary”, etc.

ScrSection has

FLEx Conceptual Model Page 87

6/11/2025

• VerseRefStart – an Integer representing the book, chapter, and verse that starts this section in

the form BBCCCVVV.

• VerseRefEnd – an Integer representing the book, chapter, and verse that ends this section in

the form BBCCCVVV.

• Heading – atomic owning property that holds an StText for the section heading.

• Content – atomic owning property that holds an StText for the rest of the paragraphs in a

section.

Footnote text is stored in ScrFootnote objects. They are owned in the Footnotes property of

ScrBook.

ScrFootnote has

• FootnoteMarker – a String with the footnote marker in a “Note Marker” style.

• ParaContainingOrc – an atomic reference to ScrTxtPara that references the paragraph that

contains the footnote. In the paragraph, the footnote is represented by an ownlink attribute in

the Run with the guid of the ScrFootnote.

• Paragraphs – an owning sequence of ScrTxtPara that contains the content of the footnote.

7 Notebook model

FLEx has a Notebook area that allows a user to record information relating to the culture. Most

of the fields in the Notebook are Multi-Paragraph fields with styles for paragraphs and text. A

notebook record can reference a text that is an actual Text in Interlinear Texts.

FLEx Conceptual Model Page 88

6/11/2025

Here’s a sample record with a few fields filled in.

And this is how it looks from the linked interlinear text.

This is represented in FLEx as

FLEx Conceptual Model Page 89

6/11/2025

RnResearchNbk is owned in LangProject in atomic owning ResearchNotebook property.

RnReserachNbk has a Records owning collection of RnGenericRec which includes the

properties shown in this example, plus other ones including custom fields. The Title is a String.

A RnGenericRec can be linked to a Text that shows up in Interlinear Text. It does this through

the atomic reference Text property. The view in the Notebook just shows the baseline text. The

view in the Interlinear Text Info tab shows some of the information from the Notebook record.

The Description is an owning atomic property holding a StText, which owns any number of

StTxtPara objects that can have paragraph and character styles. The Participants field is an

owning collection of RnRoledPartic. RnRoledPartic has reference collection Participants

property referencing CmPerson objects from the People list. It also has a Role atomic reference

to CmPossibility from the Roles list. RnGenericRec has an AnthroCodes reference collection to

CmAnthroItem. The display typically shows the abbreviation and name of the anthro items.

RnGenericRec has a Locations reference collection to CmLocation objects in the Locations list.

It also has an atomic reference Type property referencing one of the CmPossibility items in the

Notebook Record Types list.

